Evaluating Vertical and Horizontal Well Potential of Tight Oil Exploratory Wells in the Jimusaer Field

2015 ◽  
Author(s):  
Lichun Kuang ◽  
Jiangwen Xu ◽  
Xinjun Mao ◽  
Chaofeng Chen ◽  
Xuebin Li ◽  
...  

Abstract The necessity to exploit hydrocarbon resources further down the resource triangle has resulted in the industry attempting to evaluate large and more-challenging resource plays due to the scarcity of conventional reserves. The Jimusaer field, located in the Junggar basin in western China, represents such a scenario and covers a surface area exceeding 300,000 acres with a targeted reservoir thickness of 650 ft located between 9,100 and 14,500 ft true vertical depth (TVD). Typical exploration programs include extensive data collection of reservoir and hydrocarbon properties with respect to structural location. The assessment and evaluation of such data improve the understanding of the subsurface uncertainties and associated risk. In Junggar basin, given the uncertainty in well productivity, increased attention to the hydraulic fracturing process was required. The process, which included the application and combination of several types of technology, was built upon and optimized through the initial 28 vertical wells. To further improve well performance, long horizontal laterals combined with multistage hydraulic fracturing were needed to provide proof of commercial productivity and subsequent field development, which, for several years, was not thought to be possible. Based on the initial vertical well results, three horizontal wells were designed based upon the improved reservoir understanding. This phase was meant to further advance the understanding of the subsurface and completion and stimulation technologies while identifying areas for future productivity improvement. Finally, the unique geological properties of this reservoir required different strategies and technology deployment to make them viable and sustainable in terms of reservoir and completion quality factors. The successful application of a locally developed technology plan and pilot program through a multidisciplinary approach further demonstrated the suitability of a given technology with the lessons learned being captured and incorporated into future well designs.

2015 ◽  
Author(s):  
Jing Zhang ◽  
Xu Jiangwen ◽  
Hong Jiang ◽  
Tobias Judd ◽  
Yuan Liu ◽  
...  

Abstract The early development of a systematic approach to well completion practices centralized around multistage hydraulic fracturing treatments is often the critical component to sustainable reservoir exploitation and development. Unfortunately, the exploitation of either exploratory or underdeveloped resources often has a number of issues that include the understanding of geological heterogeneity with different results observed within close proximity and the need to optimize completion techniques to offset the potential rapid decline in well productivity. For these cases, well completion and stimulation practices are of utmost importance with the optimization and evaluation of such designs to include and account for the integration of all reservoir and geomechanical parameters. Recent vertical well results from initial exploratory wells combined with single-well horizontal pilot wells has accelerated the development plans for the Jimusaer field located in the Junggar basin of western China. This field covers a surface area of 300,000 acres with the targeted reservoir being located between 2,300 to 4,255 m true vertical depth (TVD). The application of horizontal wells from multiwell pads with each well consisting of up to 23 hydraulic fracturing treatments was meant to exploit large volumes of hydrocarbon reserves that were previously thought unattainable. Operationally, the first four wells consisted of 62 hydraulic fracturing stages and were executed within a 28-day period. The project included the application of an integrated workflow including reservoir characterization along the length of the horizontal well lateral, deployment of novel multistage openhole completion techniques with dissolvable isolation technology, factory fracturing approach with all stages being monitored by microseismic monitoring, and application of chemical tracers on selected stages to identify zonal contribution during flowback and cleanup operations. This paper describes how the acquisition of crucial reservoir and fracturing data combined with operational performance can identify areas for improvement of future completions while strengthening existing ones.


2015 ◽  
Author(s):  
Amro Hassan ◽  
Ahmed Abd ElMeguid ◽  
Arshad Waheed ◽  
Mohamed Salah ◽  
Essam Abd ElKarim

Abstract The Baharyia formation is a common reservoir in the Western Desert of Egypt. It is characterized as a heterogeneous reservoir with low sand quality. It is comprised of fine-grained sandstone, thin, laminated, sand-poor parasequences with shale interbeds. The heterogeneity and low permeability of the Upper Baharyia reservoirs are the primary challenges to maintaining economic well productivity. The interest in developing low permeability reservoirs stems from favorable economics attributed to advancements in horizontal well drilling and hydraulic fracturing technology, offering methods to increase production by increasing the contact area of the producing interval. Subsequently, it became apparent that wellbore contact alone was not always sufficient for providing production increases expected, thus requiring multistage hydraulic fracturing (MSHF) stimulation treatments to achieve production targets. Primary well production analysis revealed that the cumulative production from the horizontal well discussed was enhanced from 37 to 70% of recoverable reserve and the recovery factor was doubled. From a production analogy standpoint, these resulted in reduced drilling of three vertical wells and had direct economic benefits by reducing the installed artificial lift strings, related expensive artificial lift equipment repairs, and the number of necessary workovers. This paper takes a multidisciplinary approach to help understand productivity enhancement of low permeability reservoirs in the Western Desert of Egypt, through a detailed analysis of well performance and successful implementation of MSHF in horizontal wells to maximize drainage volume around the well. It is intended to serve as guidelines to help operators facing similar challenges.


2021 ◽  
Author(s):  
Vinicius Gasparetto ◽  
Thierry Hernalsteens ◽  
Joao Francisco Fleck Heck Britto ◽  
Joab Flavio Araujo Leao ◽  
Thiago Duarte Fonseca Dos Santos ◽  
...  

Abstract Buzios is a super-giant ultra-deep-water pre-salt oil and gas field located in the Santos Basin off Brazil's Southeastern coast. There are four production systems already installed in the field. Designed to use flexible pipes to tie back the production and injection wells to the FPSOs (Floating Production Storage and Offloading), these systems have taken advantage from several lessons learned in the previous projects installed by Petrobras in Santos Basin pre-salt areas since 2010. This knowledge, combined with advances in flexible pipe technology, use of long-term contracts and early engagement with suppliers, made it possible to optimize the field development, minimizing the risks and reducing the capital expenditure (CAPEX) initially planned. This paper presents the first four Buzios subsea system developments, highlighting some of the technological achievements applied in the field, as the first wide application of 8" Internal Diameter (ID) flexible production pipes for ultra-deep water, leading to faster ramp-ups and higher production flowrates. It describes how the supply chain strategy provided flexibility to cover the remaining project uncertainties, and reports the optimizations carried out in flexible riser systems and subsea layouts. The flexible risers, usually installed in lazy wave configurations at such water depths, were optimized reducing the total buoyancy necessary. For water injection and service lines, the buoyancy modules were completely removed, and thus the lines were installed in a free-hanging configuration. Riser configuration optimizations promoted a drop of around 25% on total riser CAPEX and allowed the riser anchor position to be placed closer to the floating production unit, promoting opportunities for reducing the subsea tieback lengths. Standardization of pipe specifications and the riser configurations allowed the projects to exchange the lines, increasing flexibility and avoiding riser interference in a scenario with multiple suppliers. Furthermore, Buzios was the first ultra-deep-water project to install a flexible line, riser, and flowline, with fully Controlled Annulus Solution (CAS). This system, developed by TechnipFMC, allows pipe integrity management from the topside, which reduces subsea inspections. As an outcome of the technological improvements and the optimizations applied to the Buzios subsea system, a vast reduction in subsea CAPEX it was achieved, with a swift production ramp-up.


2021 ◽  
Author(s):  
Zhihua Wang ◽  
Daniel Newton ◽  
Aqib Qureshi ◽  
Yoshito Uchiyama ◽  
Georgina Corona ◽  
...  

Abstract This Extended Reach Drilling (ERD) field re-development of a giant offshore field in the United Arab Emirates (UAE) requires in most cases extremely long laterals to reach the defined reservoir targets. However, certain areas of the field show permeability and / or pressure variations along the horizontal laterals. This heterogeneity requires an inflow control device (ICD) lower completion liner to deliver the required well performance that will adequately produce and sweep the reservoir. The ICD lower completion along with the extremely long laterals means significant time is spent switching the well from reservoir drilling fluid (RDF) non-aqueous fluid (NAF) to an aqueous completion brine. To reduce the amount of rig time spent on the displacement portion of the completion phase, an innovative technology was developed to enable the ICDs to be run in hole in a closed position and enable circulating through the end of the liner. The technology uses a dissolvable material, which is installed in the ICD to temporarily plug it. The dissolvable material is inert to the RDF NAF while the ICDs are run into hole, and then dissolves in brine after the well is displaced from RDF NAF to completion brine, changing the ICDs from closed to an open position. The ability to circulate through the end of the liner, with the support of the plugged ICDs, when the lower completion is deployed and at total depth (TD), enables switching the well from RDF NAF drilling fluid to an aqueous completion brine without the associated rig time of the original displacement method. The technique eliminates the use of a dedicated inner displacement string and allows for the displacement to be performed with the liner running string, saving 4-5 days per well. An added bonus is that the unique design allowed for this feature to be retrofitted to existing standard ICDs providing improved inventory control. In this paper the authors will demonstrate the technology and system developed to perform this operation, as well as the qualification testing, field installations, and lessons learned that were required to take this solution from concept to successful performance improvement initiative.


2021 ◽  
Author(s):  
Rahul Kamble ◽  
Youssef Ali Kassem ◽  
Kshudiram Indulkar ◽  
Kieran Price ◽  
Majid Mohammed A. ◽  
...  

Abstract Coring during the development phase of an oil and gas field is very costly; however, the subsurface insights are indispensable for a Field Development Team to study reservoir characterization and well placement strategy in Carbonate formations (Dolomite and limestone with Anhydrite layers). The objective of this case study is to capture the successful coring operation in high angle ERD wells, drilled from the fixed well location on a well pad of an artificial island located offshore in the United Arab Emirates. The well was planned and drilled at the midpoint of the development drilling campaign, which presented a major challenge of wellbore collision risk whilst coring in an already congested area. The final agreed pilot hole profile was designed to pass through two adjacent oil producer wells separated by a geological barrier, however, the actual separation ratio was < 1.6 (acceptable SF to drill the well safely), which could have compromised the planned core interval against the Field Development Team's requirement. To mitigate the collision risks with offset wells during the coring operation, a low flow rate MWD tool was incorporated in the coring BHA to monitor the well path while cutting the core. After taking surveys, IFR and MSA corrections were applied to MWD surveys, which demonstrated an acceptable increase in well separation factor as per company Anti-Collision Risk Policy to continue coring operations without shutting down adjacent wells. A total of 3 runs incorporating the MWD tool in the coring BHA were performed out of a total of 16 runs. The maximum inclination through the coring interval was 73° with medium well departure criteria. The main objective of the pilot hole was data gathering, which included a full suite of open hole logging, seismic and core cut across the target reservoir. A total of 1295 ft of core was recovered in a high angle well across the carbonate formation's different layers, with an average of 99% recovery in each run. These carbonate formations contain between 2-4% H2S and exhibit some fractured layers of rock. To limit and validate the high cost of coring operations in addition to core quality in the development phase, it was necessary to avoid early core jamming in the dolomite, limestone and anhydrite layers, based on previous coring runs in the field. Core jamming leads to early termination of the coring run and results in the loss of a valuable source of information from the cut core column in the barrel. Furthermore, it would have a major impact on coring KPIs, consequently compromising coring and well objectives. Premature core jamming and less-than-planned core recovery from previous cored wells challenged and a motivated the team to review complete field data and lessons learned from cored offset wells. Several coring systems were evaluated and finally, one coring system was accepted based on core quality as being the primary KPI. These lessons learned were used for optimizing certain coring tools technical improvements and procedures, such as core barrel, core head, core handling and surface core processing in addition to the design of drilling fluids and well path. The selection of a 4" core barrel and the improved core head design with optimized blade profile and hold on sharp polished cutters with optimized hydraulic efficiency, in addition to the close monitoring of coring parameters, played a significant role in improving core cutting in fractured carbonate formation layers. This optimization helped the team to successfully complete the 1st high angle coring operation offshore in the United Arab Emirates. This case study shares the value of offset wells data for coring jobs to reduce the risk of core jamming, optimize core recovery and reduce wellbore collision risks. It also details BHA design decisions(4"core barrel, core head, low flow rate MWD tool and appropriate coring parameters), all of which led to a new record of cutting 1295 ft core in a carbonate formation with almost 100% recovery on surface.


Sign in / Sign up

Export Citation Format

Share Document