Identification of Well Completion and Hydraulic Fracturing Performance Factors of Initial Development Wells within a Tight Oil Project in West China

2015 ◽  
Author(s):  
Jing Zhang ◽  
Xu Jiangwen ◽  
Hong Jiang ◽  
Tobias Judd ◽  
Yuan Liu ◽  
...  

Abstract The early development of a systematic approach to well completion practices centralized around multistage hydraulic fracturing treatments is often the critical component to sustainable reservoir exploitation and development. Unfortunately, the exploitation of either exploratory or underdeveloped resources often has a number of issues that include the understanding of geological heterogeneity with different results observed within close proximity and the need to optimize completion techniques to offset the potential rapid decline in well productivity. For these cases, well completion and stimulation practices are of utmost importance with the optimization and evaluation of such designs to include and account for the integration of all reservoir and geomechanical parameters. Recent vertical well results from initial exploratory wells combined with single-well horizontal pilot wells has accelerated the development plans for the Jimusaer field located in the Junggar basin of western China. This field covers a surface area of 300,000 acres with the targeted reservoir being located between 2,300 to 4,255 m true vertical depth (TVD). The application of horizontal wells from multiwell pads with each well consisting of up to 23 hydraulic fracturing treatments was meant to exploit large volumes of hydrocarbon reserves that were previously thought unattainable. Operationally, the first four wells consisted of 62 hydraulic fracturing stages and were executed within a 28-day period. The project included the application of an integrated workflow including reservoir characterization along the length of the horizontal well lateral, deployment of novel multistage openhole completion techniques with dissolvable isolation technology, factory fracturing approach with all stages being monitored by microseismic monitoring, and application of chemical tracers on selected stages to identify zonal contribution during flowback and cleanup operations. This paper describes how the acquisition of crucial reservoir and fracturing data combined with operational performance can identify areas for improvement of future completions while strengthening existing ones.

2015 ◽  
Author(s):  
Lichun Kuang ◽  
Jiangwen Xu ◽  
Xinjun Mao ◽  
Chaofeng Chen ◽  
Xuebin Li ◽  
...  

Abstract The necessity to exploit hydrocarbon resources further down the resource triangle has resulted in the industry attempting to evaluate large and more-challenging resource plays due to the scarcity of conventional reserves. The Jimusaer field, located in the Junggar basin in western China, represents such a scenario and covers a surface area exceeding 300,000 acres with a targeted reservoir thickness of 650 ft located between 9,100 and 14,500 ft true vertical depth (TVD). Typical exploration programs include extensive data collection of reservoir and hydrocarbon properties with respect to structural location. The assessment and evaluation of such data improve the understanding of the subsurface uncertainties and associated risk. In Junggar basin, given the uncertainty in well productivity, increased attention to the hydraulic fracturing process was required. The process, which included the application and combination of several types of technology, was built upon and optimized through the initial 28 vertical wells. To further improve well performance, long horizontal laterals combined with multistage hydraulic fracturing were needed to provide proof of commercial productivity and subsequent field development, which, for several years, was not thought to be possible. Based on the initial vertical well results, three horizontal wells were designed based upon the improved reservoir understanding. This phase was meant to further advance the understanding of the subsurface and completion and stimulation technologies while identifying areas for future productivity improvement. Finally, the unique geological properties of this reservoir required different strategies and technology deployment to make them viable and sustainable in terms of reservoir and completion quality factors. The successful application of a locally developed technology plan and pilot program through a multidisciplinary approach further demonstrated the suitability of a given technology with the lessons learned being captured and incorporated into future well designs.


2021 ◽  
Author(s):  
Hamid Pourpak ◽  
Samuel Taubert ◽  
Marios Theodorakopoulos ◽  
Arnaud Lefebvre-Prudencio ◽  
Chay Pointer ◽  
...  

Abstract The Diyab play is an emerging unconventional play in the Middle East. Up to date, reservoir characterization assessments have proved adequate productivity of the play in the United Arab Emirates (UAE). In this paper, an advanced simulation and modeling workflow is presented, which was applied on selected wells located on an appraisal area, by integrating geological, geomechanical, and hydraulic fracturing data. Results will be used to optimize future well landing points, well spacing and completion designs, allowing to enhance the Stimulated Rock Volume (SRV) and its consequent production. A 3D static model was built, by propagating across the appraisal area, all subsurface static properties from core-calibrated petrophysical and geomechanical logs which originate from vertical pilot wells. In addition, a Discrete Fracture Network (DFN) derived from numerous image logs was imported in the model. Afterwards, completion data from one multi-stage hydraulically fracked horizontal well was integrated into the sector model. Simulations of hydraulic fracturing were performed and the sector model was calibrated to the real hydraulic fracturing data. Different scenarios for the fracture height were tested considering uncertainties related to the fracture barriers. This has allowed for a better understanding of the fracture propagation and SRV creation in the reservoir at the main target. In the last step, production resulting from the SRV was simulated and calibrated to the field data. In the end, the calibrated parameters were applied to the newly drilled nearby horizontal wells in the same area, while they were hydraulically fractured with different completion designs and the simulated SRVs of the new wells were then compared with the one calculated on the previous well. Applying a fully-integrated geology, geomechanics, completion and production workflow has helped us to understand the impact of geology, natural fractures, rock mechanical properties and stress regimes in the SRV geometry for the unconventional Diyab play. This work also highlights the importance of data acquisition, reservoir characterization and of SRV simulation calibration processes. This fully integrated workflow will allow for an optimized completion strategy, well landing and spacing for the future horizontal wells. A fully multi-disciplinary simulation workflow was applied to the Diyab unconventional play in onshore UAE. This workflow illustrated the most important parameters impacting the SRV creation and production in the Diyab formation for he studied area. Multiple simulation scenarios and calibration runs showed how sensitive the SRV can be to different parameters and how well placement and fracture jobs can be possibly improved to enhance the SRV creation and ultimately the production performance.


2010 ◽  
Author(s):  
Efejera Akpodiate Ejofodomi ◽  
Malcolm Yates ◽  
Robert Downie ◽  
Tarik Itibrout ◽  
O.A. Catoi

2018 ◽  
Vol 6 (3) ◽  
pp. SH39-SH48 ◽  
Author(s):  
Wojciech Gajek ◽  
Jacek Trojanowski ◽  
Michał Malinowski ◽  
Marek Jarosiński ◽  
Marko Riedel

A precise velocity model is necessary to obtain reliable locations of microseismic events, which provide information about the effectiveness of the hydraulic stimulation. Seismic anisotropy plays an important role in microseismic event location by imposing the dependency between wave velocities and its propagation direction. Building an anisotropic velocity model that accounts for that effect allows for more accurate location of microseismic events. We have used downhole microseismic records from a pilot hydraulic fracturing experiment in Lower-Paleozoic shale gas play in the Baltic Basin, Northern Poland, to obtain accurate microseismic events locations. We have developed a workflow for a vertical transverse isotropy velocity model construction when facing a challenging absence of horizontally polarized S-waves in perforation shot data, which carry information about Thomsen’s [Formula: see text] parameter and provide valuable constraints for locating microseismic events. We extract effective [Formula: see text], [Formula: see text] and [Formula: see text], [Formula: see text] for each layer from the P- and SV-wave arrivals of perforation shots, whereas the unresolved [Formula: see text] is retrieved afterward from the SH-SV-wave delay time of selected microseismic events. An inverted velocity model provides more reliable location of microseismic events, which then becomes an essential input for evaluating the hydraulic stimulation job effectiveness in the geomechanical context. We evaluate the influence of the preexisting fracture sets and obliquity between the borehole trajectory and principal horizontal stress direction on the hydraulic treatment performance. The fracturing fluid migrates to previously fractured zones, while the growth of the microseismic volume in consecutive stages is caused by increased penetration of the above-lying lithologic formations.


2021 ◽  
Author(s):  
Abdul Bari ◽  
Mohammad Rasheed Khan ◽  
M. Sohaib Tanveer ◽  
Muhammad Hammad ◽  
Asad Mumtaz Adhami ◽  
...  

Abstract In today's dynamically challenging E&P industry, exploration activities demand for out-of-the-box measures to make the most out of the data available at hand. Instead of relying on time consuming and cost-intensive deliverability testing, there is a strong push to extract maximum possible information from time- and cost-efficient wireline formation testers in combination with other openhole logs to get critical reservoir insight. Consequently, driving efficiency in the appraisal process by reducing redundant expenditures linked with reservoir evaluation. Employing a data-driven approach, this paper addresses the need to build single-well analytical models that combines knowledge of core data, petrophysical evaluation and reservoir fluid properties. Resultantly, predictive analysis using cognitive processes to determine multilayer productivity for an exploratory well is achieved. Single Well Predictive Modeling (SWPM) workflow is developed for this case which utilizes plethora of formation evaluation information which traditionally resides across siloed disciplines. A tailor-made workflow has been implemented which goes beyond the conventional formation tester deliverables while incorporating PVT and numerical simulation methodologies. Stage one involved reservoir characterization utilizing Interval Pressure Transient Testing (IPTT) done through the mini-DST operation on wireline formation tester. Stage two concerns the use of analytical modeling to yield exact solution to an approximate problem whose end-product is an estimate of the Absolute Open Flow Potential (AOFP). Stage three involves utilizing fluid properties from downhole fluid samples and integrating with core, OH logs, and IPTT answer products to yield a calibrated SWPM model, which includes development of a 1D petrophysical model. Additionally, this stage produces a 3D simulation model to yield a reservoir production performance deliverable which considers variable rock typing through neural network analysis. Ultimately, stage four combines the preceding analysis to develop a wellbore production model which aids in optimizing completion strategies. The application of this data-driven and cognitive technique has helped the operator in evaluating the potential of the reservoir early-on to aid in the decision-making process for further investments. An exhaustive workflow is in place that can be adopted for informed reservoir deliverability modeling in case of early well-life evaluations.


Sign in / Sign up

Export Citation Format

Share Document