Sagebrush Soundscapes and the Effects of Gas-Field Sounds on Greater Sage-Grouse

Western Birds ◽  
2021 ◽  
Vol 52 (1) ◽  
pp. 23-46
Author(s):  
Skip Ambrose ◽  
Christine Florian ◽  
Justin Olnes ◽  
John MacDonald ◽  
Therese Hartman

Greater Sage-Grouse (Centrocercus urophasianus) use elaborate acoustic and visual displays to attract and select mates, and females and chicks depend on acoustic communication during brood rearing. A potential threat to the grouse is sounds associated with human activity. During April, 2013–2020, we collected 17,825 hours of acoustic data in three different acoustic situations in the sagebrush of Wyoming: rural, undeveloped areas (6), at Greater Sage-Grouse leks in a natural-gas field (20), and near active machinery in that gas field (17). The average existing sound levels in undeveloped sagebrush areas were LAeq = 26 dB and LA50 = 20 dB, and the average background sound level was LA90 = 14 dB. These values are lower than previously reported, due in part to our use of more sensitive equipment as well as addressing the influence of the instruments’ electronic self-noise. LAeq and LA50 at leks in the gas field ranged from 25.5 to 33.7 dB and 20.5 to 31.3 dB, respectively, depending on the distance, number, and type of nearby activities. Sound levels at leks were correlated with trends in the number of grouse using the lek: the higher the sound level, the greater the likelihood of a decline. Thresholds above which declines occurred were LAeq = 31 dB and LA50 = 26 dB. Leks with LAeq > 31 dB and LA50 >26 dB, 100% and 91%, respectively, had declining trends. Our findings suggest that the current policy of limiting sound levels at leks to LA50 < 10 dB (or LAeq < 15 dB) over the background sound level is appropriate, if an accurate background level is used.

2021 ◽  
Vol 8 ◽  
Author(s):  
Carrie C. Wall ◽  
Samara M. Haver ◽  
Leila T. Hatch ◽  
Jennifer Miksis-Olds ◽  
Rob Bochenek ◽  
...  

Passive acoustic data collection has grown exponentially over the past decade resulting in petabytes of data that document our ocean soundscapes. This effort has resulted in two big data challenges: (1) the curation, management, and global dissemination of passive acoustic datasets and (2) efficiently extracting critical information and comparing it to other datasets in the context of ecosystem-based research and management. To address the former, the NOAA National Centers for Environmental Information recently established an archive for passive acoustic data. This fast-growing archive currently contains over 100 TB of passive acoustic audio files mainly collected from stationary recorders throughout waters in the United States. These datasets are documented with standards-based metadata and are freely available to the public. To begin to address the latter, through standardized processing and centralized stewardship and access, we provide a previously unattainable comparison of first order sound level-patterns from archived data collected across three distinctly separate long-term passive acoustic monitoring (PAM) efforts conducted at regional and national scales: NOAA/National Park Service Ocean Noise Reference Station Network, the Atlantic Deepwater Ecosystem Observatory Network, and the Sanctuary Soundscape Monitoring Project. Nine sites were selected from these projects covering the Alaskan Arctic, Northeast and Central Pacific, Gulf of Mexico, Caribbean Sea, and Mid and Northwest Atlantic. Sites could generally be categorized into those strongly influenced by anthropogenic noise (e.g., vessel traffic) and those that were not. Higher sound levels, specifically for lower frequencies (&lt;125 Hz), and proximity to densely populated coastal zones were common characteristics of sites influenced by anthropogenic noise. Conversely, sites with lower overall sound levels and away from dense populations resulted in soundscape patterns influenced by biological sources. Seasonal variability in sound levels across selected decidecade bands was apparent for most sites and often represented changes in the presence or behavior of sound-producing species. This first order examination of levels across projects highlights the utility of these initial metrics to identify patterns that can then be examined in more detail. Finally, to help the PAM community collectively and collaboratively move forward, we propose the next frontier for scalable data stewardship, access, and processing flow.


2020 ◽  
Vol 11 (1) ◽  
pp. 151-163
Author(s):  
Gregory T. Wann ◽  
Clait E. Braun ◽  
Cameron L. Aldridge ◽  
Michael A. Schroeder

Abstract Numerous studies provide estimates of nesting propensity rates (proportion of females attempting to nest at least once in a given year) for greater sage-grouse Centrocercus urophasianus. However, females may initiate nests without being detected during the course of normal research, leading to negatively biased estimates. We evaluated nesting propensity rates (rate of females laying ≥1 egg/y) by examining ovaries from 941 female sage-grouse collected at hunter-check stations in North Park, Colorado, during 1975–1984. Mean rate estimates of nesting propensity were lower for yearlings (0.926, 95% CI = 0.895–0.948) than adults (0.964, 95% CI = 0.945–0.978). We did not attempt to estimate laying rates (number of eggs laid per year) because they were likely unreliable. Nesting success—estimated as the probability of females producing a successful clutch in a given year based on primary feather replacement from hunter-harvested wings—was lower for yearlings (0.398, 95% CI = 0.370–0.427) than adults (0.571, 95% CI = 0.546–0.596). There were more chicks per female produced when nesting propensity rates were high, indicating nesting propensity rates correlate with the number of juveniles in the autumn population. Both nesting propensity rates and nesting success were positively related to precipitation during the lekking and brood-rearing seasons, respectively. Nesting propensity rates were positively related to spring abundance (as measured from annual lek counts), but nesting success was unrelated to spring abundance. A range-wide estimate of an unadjusted, apparent nesting propensity rate available from a previous study was approximately 7% lower than the North Park population. Postovulatory follicles provide a direct source of information on nesting propensity rates estimated from hunter-harvested sage-grouse. These estimated rates may prove useful to gain insights into annual variation of hunted populations' reproductive efforts.


The Condor ◽  
2001 ◽  
Vol 103 (3) ◽  
pp. 537-543 ◽  
Author(s):  
Cameron L. Aldridge ◽  
R. Mark Brigham

Abstract In Canada, Greater Sage-Grouse (Centrocercus urophasianus) are at the northern edge of their range, occurring only in southeastern Alberta and southwestern Saskatchewan. The population in Canada has declined by 66% to 92% over the last 30 years. We used radio-telemetry to follow 20 female Greater Sage-Grouse and monitor productivity in southeastern Alberta, and to assess habitat use at nesting and brood-rearing locations. All females attempted to nest. Mean clutch size (7.8 eggs per nest) was at the high end of the normal range for sage-grouse (typically 6.6–8.2). Nest success (46%) and breeding success (55%) were within the range found for more southerly populations (15% to 86% and 15% to 70%, respectively). Thirty-six percent of unsuccessful females attempted to renest. Fledging success was slightly lower than reported in other studies. Thus, reproductive effort does not appear to be related to the population decline. However, chick survival to ≥50 days of age (mean = 18%) was only about half of that estimated (35%) for a stable or slightly declining population, suggesting that chick survival may be the most important factor reducing overall reproductive success and contributing to the decline of Greater Sage-Grouse in Canada. Actividades de Anidación y Reproducción de Centrocercus urophasianus en una Población del Extremo Norte en Declive Resumen. En Canadá, Centrocercus urophasianus está en el extremo norte de su distribución, encontrándose sólo en el sureste de Alberta y el suroeste de Saskatchewan. La población de Canadá ha disminuido entre el 66% y 92% durante los últimos 30 años. Utilizamos radio-telemetría para seguir a 20 hembras de C. urophasianus y monitorear su productividad en el sureste de Alberta y para evaluar el uso de hábitat en sitios de anidación y de cría de los pichones. Todas las hembras intentaron anidar. El tamaño promedio de la nidada (7.8 huevos por nido) estuvo en el extremo superior del rango normal de C. urophasianus (típicamente 6.6–8.2). El éxito de anidación (46%) y de reproducción (55%) estuvieron dentro de los rangos encontrados en poblaciones de más al sur (15% a 86% y 15% a 70%, respectivamente). El treinta y seis por ciento de las hembras que no tuvieron éxito intentaron volver a anidar. El éxito en la crianza de polluelos hasta la etapa de volantones fue ligeramente menor que el reportado en otros estudios. Por lo tanto, el esfuerzo reproductivo no parece estar relacionado con el declive poblacional. Sin embargo, la supervivencia de los polluelos hasta 50 días de edad o más (promedio = 18%) fue sólo aproximadamente la mitad de lo que se ha estimado para una población estable o en ligero declive (35%), lo que sugiere que la supervivencia de los pichones podría ser el factor más importante reduciendo el éxito reproductivo en general y contribuyendo al declive de C. urophasianus en Canadá.


2007 ◽  
Vol 13 (sp1) ◽  
pp. 42-50 ◽  
Author(s):  
Christian A. Hagen ◽  
John W. Connelly ◽  
Michael A. Schroeder

1999 ◽  
Author(s):  
Michael A. Schroeder ◽  
Jessica R. Young ◽  
Clait E. Braun

2021 ◽  
Author(s):  
Mary B. Meyerpeter ◽  
Kade D. Lazenby ◽  
Peter S. Coates ◽  
Mark A. Ricca ◽  
Steven R. Mathews ◽  
...  

2021 ◽  
Vol 10 (14) ◽  
pp. 3078
Author(s):  
Sara Akbarzadeh ◽  
Sungmin Lee ◽  
Chin-Tuan Tan

In multi-speaker environments, cochlear implant (CI) users may attend to a target sound source in a different manner from normal hearing (NH) individuals during a conversation. This study attempted to investigate the effect of conversational sound levels on the mechanisms adopted by CI and NH listeners in selective auditory attention and how it affects their daily conversation. Nine CI users (five bilateral, three unilateral, and one bimodal) and eight NH listeners participated in this study. The behavioral speech recognition scores were collected using a matrix sentences test, and neural tracking to speech envelope was recorded using electroencephalography (EEG). Speech stimuli were presented at three different levels (75, 65, and 55 dB SPL) in the presence of two maskers from three spatially separated speakers. Different combinations of assisted/impaired hearing modes were evaluated for CI users, and the outcomes were analyzed in three categories: electric hearing only, acoustic hearing only, and electric + acoustic hearing. Our results showed that increasing the conversational sound level degraded the selective auditory attention in electrical hearing. On the other hand, increasing the sound level improved the selective auditory attention for the acoustic hearing group. In the NH listeners, however, increasing the sound level did not cause a significant change in the auditory attention. Our result implies that the effect of the sound level on selective auditory attention varies depending on the hearing modes, and the loudness control is necessary for the ease of attending to the conversation by CI users.


2021 ◽  
Author(s):  
Kade D. Lazenby ◽  
Peter S. Coates ◽  
Shawn T. O’Neil ◽  
Michel T. Kohl ◽  
David K. Dahlgren

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Piotr F. Czempik ◽  
Agnieszka Jarosińska ◽  
Krystyna Machlowska ◽  
Michał P. Pluta

Abstract Sleep disruption is common in patients in the intensive care unit (ICU). The aim of the study was to measure sound levels during sleep-protected time in the ICU, determine sources of sound, assess the impact of sound levels and patient-related factors on duration and quality of patients' sleep. The study was performed between 2018 and 2019. A commercially available smartphone application was used to measure ambient sound levels. Sleep duration was measured using the Patient's Sleep Behaviour Observational Tool. Sleep quality was assessed using the Richards-Campbell Sleep Questionnaire (RCSQ). The study population comprised 18 (58%) men and 13 (42%) women. There were numerous sources of sound. The median duration of sleep was 5 (IQR 3.5–5.7) hours. The median score on the RCSQ was 49 (IQR 28–71) out of 100 points. Sound levels were negatively correlated with sleep duration. The cut-off peak sound level, above which sleep duration was shorter than mean sleep duration in the cohort, was 57.9 dB. Simple smartphone applications can be useful to estimate sound levels in the ICU. There are numerous sources of sound in the ICU. Individual units should identify and eliminate their own sources of sound. Sources of sound producing peak sound levels above 57.9 dB may lead to shorter sleep and should be eliminated from the ICU environment. The sound levels had no effect on sleep quality.


Sign in / Sign up

Export Citation Format

Share Document