scholarly journals GhFAD2-3 is Required for Anther Development in Gossypium hirsutum

2019 ◽  
Author(s):  
Feng Liu ◽  
Lihong Ma ◽  
Youwu Wang ◽  
Yanjun Li ◽  
Xinyu Zhang ◽  
...  

Abstract Background In higher plants, the FAD2 gene encodes the microsomal oleate Δ12-desaturase, one of the key enzymes essential for the biosynthesis of the polyunsaturated lipids that serve many important functions in plant development and stress responses. FAD2 catalyzes the first step, in the biosynthesis of the polyunsaturated fatty acids (PUFAs) found in the cell membrane and cell wall, and it is thus of great importance to investigate the regulatory role of FAD2 in anther development.Results We reported the molecular characterization of the cotton (Gossypium hirsutum) GhFAD2 gene family and the essential role of GhFAD2-3 in cotton anther development. G. hirsutum contains four pairs of homoeologous FAD2 genes (GhFAD2-1 to GhFAD2-4). GhFAD2-3 is ubiquitously and relatively highly expressed in all analyzed tissues, particularly in anthers. Specific inhibition of GhFAD2-3 using the RNA interference approach resulted in male sterility due to impaired anther development at the stages from meiosis to maturation. The cellular phenotypic abnormality observed at the meiosis stage of the GhFAD2-3 silenced plant (fad2-3) coincides with the significant reduction of C18:2 in anthers at the same stage. Compared with that of the wild type (WT), the content of C18:1 was 41.48%, which increased by 5 fold in the fad2-3 anther at the pollen maturation stage. Moreover, the ratio of monounsaturated to polyunsaturated fatty acid was 5.43 in fad2-3 anther, which was much higher than that of the WT (only 0.39). Through compositional analysis of anthers cuticle and transcriptome data, we demonstrated it was unfavorable to the development of anther by regulating GhFAD2-3 expression level to increase the oleic acid content.Conclusions Our work demonstrated the importance of C18:2 and/or C18:3 in the development of the pollen exine and anther cuticle in cotton and provided clue for further investigation of the physiological significance of the fatty acid composition for plant growth and development.

2019 ◽  
Author(s):  
Feng Liu ◽  
Lihong Ma ◽  
Youwu Wang ◽  
Yanjun Li ◽  
Xinyu Zhang ◽  
...  

Abstract Background In higher plants, the FAD2 gene encodes the microsomal oleate Δ12-desaturase, one of the key enzymes essential for the biosynthesis of the polyunsaturated lipids that serve many important functions in plant development and stress responses. FAD2 catalyzes the first step, in the biosynthesis of the polyunsaturated fatty acids (PUFAs) found in the cell membrane and cell wall, and it is thus of great importance to investigate the regulatory role of FAD2 in anther development.Results We reported the molecular characterization of the cotton (Gossypium hirsutum) GhFAD2 gene family and the essential role of GhFAD2-3 in cotton anther development. G. hirsutum contains four pairs of homoeologous FAD2 genes (GhFAD2-1 to GhFAD2-4). GhFAD2-3 is ubiquitously and relatively highly expressed in all analyzed tissues, particularly in anthers. Specific inhibition of GhFAD2-3 using the RNA interference approach resulted in male sterility due to impaired anther development at the stages from meiosis to maturation. The cellular phenotypic abnormality observed at the meiosis stage of the GhFAD2-3 silenced plant (fad2-3) coincides with the significant reduction of C18:2 in anthers at the same stage. Compared with that of the wild type (WT), the content of C18:1 was 41.48%, which increased by 5 fold in the fad2-3 anther at the pollen maturation stage. Moreover, the ratio of monounsaturated to polyunsaturated fatty acid was 5.43 in fad2-3 anther, which was much higher than that of the WT (only 0.39). Through compositional analysis of anthers cuticle and transcriptome data, we demonstrated it was unfavorable to the development of anther by regulating GhFAD2-3 expression level to increase the oleic acid content.Conclusions Our work demonstrated the importance of C18:2 and/or C18:3 in the development of the pollen exine and anther cuticle in cotton and provided clue for further investigation of the physiological significance of the fatty acid composition for plant growth and development.


2019 ◽  
Author(s):  
Feng Liu ◽  
Lihong Ma ◽  
Youwu Wang ◽  
Yanjun Li ◽  
Xinyu Zhang ◽  
...  

Abstract Background In higher plants, FAD2 gene encodes the microsomal oleate Δ12-desaturase, one of the key enzymes essential for biosynthesis of polyunsaturated lipids that serve many important functions in plant development and stress responses. FAD2 catalyzes the first step, towards biosynthesis of polyunsaturated fatty acids (PUFAs) found in cell membrane and wall, and it is thus of great importance to investigate the regulatory role of FAD2 in anther development. Results We reported the molecular characterization of the cotton (Gossypium hirsutum) GhFAD2 gene family and the essential role of GhFAD2-3 in cotton anther development. G. hirsutum contains four pairs of homoeologous FAD2 genes (GhFAD2-1 to GhFAD2-4). GhFAD2-3 is ubiquitously and relatively highly expressed in all tissues analyzed, particularly in anthers. Specific inhibition of GhFAD2-3 using the RNA interference approach resulted in male sterility due to impaired anther development at the stages from meiosis to maturation. The cellular phenotypic abnormality observed at the meiosis stage of the GhFAD2-3 silenced plant (fad2-3) coincides with the significant reduction of C18:2 in anthers at the same stage. Compared with that of wild type (WT), the content of C18:1 was 41.48%, accordingly increasing by 5 fold in fad2-3 anther at pollen maturation stage. Moreover, the ratio of monounsaturated to polyunsaturated fatty acid reached to 5.43 in fad2-3 anther, which was much higher than that of the WT (only 0.39). Based on compositional analysis of anthers cuticle and transcriptome data, we demonstrated it was unfavorable to the development of anther by regulating GhFAD2-3 expression level to increase the oleic acid content. Conclusions Our work demonstrated the importance of C18:2 and/or C18:3 in development of pollen exine and anther cuticle in cotton, and provided clue for further investigation of the physiological significance of the fatty acid composition in plant growth and development.


2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Feng Liu ◽  
Lihong Ma ◽  
Youwu Wang ◽  
Yanjun Li ◽  
Xinyu Zhang ◽  
...  

Abstract Background In higher plants, the FAD2 gene encodes the microsomal oleate Δ12-desaturase, one of the key enzymes essential for the biosynthesis of the polyunsaturated lipids that serve many important functions in plant development and stress responses. FAD2 catalyzes the first step, in the biosynthesis of the polyunsaturated fatty acids (PUFAs) found in the cell membrane and cell wall, and it is thus of great importance to investigate the regulatory role of FAD2 in anther development. Results We reported the molecular characterization of the cotton (Gossypium hirsutum) GhFAD2 gene family and the essential role of GhFAD2–3 in cotton anther development. G. hirsutum contains four pairs of homoeologous FAD2 genes (GhFAD2–1 to GhFAD2–4). GhFAD2–3 is ubiquitously and relatively highly expressed in all analyzed tissues, particularly in anthers. Specific inhibition of GhFAD2–3 using the RNA interference approach resulted in male sterility due to impaired anther development at the stages from meiosis to maturation. The cellular phenotypic abnormality observed at the meiosis stage of the GhFAD2–3 silenced plant (fad2–3) coincides with the significant reduction of C18:2 in anthers at the same stage. Compared with that of the wild type (WT), the content of C18:1 was 41.48%, which increased by 5 fold in the fad2–3 anther at the pollen maturation stage. Moreover, the ratio of monounsaturated to polyunsaturated fatty acid was 5.43 in fad2–3 anther, which was much higher than that of the WT (only 0.39). Through compositional analysis of anthers cuticle and transcriptome data, we demonstrated it was unfavorable to the development of anther by regulating GhFAD2–3 expression level to increase the oleic acid content. Conclusions Our work demonstrated the importance of C18:2 and/or C18:3 in the development of the pollen exine and anther cuticle in cotton and provided clue for further investigation of the physiological significance of the fatty acid composition for plant growth and development.


2019 ◽  
Author(s):  
Feng Liu ◽  
Lihong Ma ◽  
Youwu Wang ◽  
Yanjun Li ◽  
Xinyu Zhang ◽  
...  

Abstract Background In higher plants, FAD2 gene encodes the microsomal oleate Δ12-desaturase, one of the key enzymes essential for biosynthesis of polyunsaturated lipids that serve many important functions in plant development and stress responses. FAD2 catalyzes the first step, towards biosynthesis of polyunsaturated fatty acids (PUFAs) found in cell membrane and wall, and it is thus of great importance to investigate the regulatory role of FAD2 in anther development. Results We reported the molecular characterization of the cotton (Gossypium hirsutum) GhFAD2 gene family and the essential role of GhFAD2-3 in cotton anther development. G. hirsutum contains four pairs of homoeologous FAD2 genes (GhFAD2-1 to GhFAD2-4). GhFAD2-3 is ubiquitously and relatively highly expressed in all tissues analyzed, particularly in anthers. Specific inhibition of GhFAD2-3 using the RNA interference approach resulted in male sterility due to impaired anther development at the stages from meiosis to maturation. The cellular phenotypic abnormality observed at the meiosis stage of the GhFAD2-3 silenced plant (fad2-3) coincides with the significant reduction of C18:2 in anthers at the same stage. Compared with that of wild type (WT), the content of C18:1 was 41.48%, accordingly increasing by 5 fold in fad2-3 anther at pollen maturation stage. Moreover, the ration of monounsaturated and polyunsaturated fatty acid reached to 5.43 in fad2-3 anther, far beyond WT that of which was only 0.39. Based on compositional analysis of anthers cuticle and transcriptome data, we demonstrated it was unfavorable to the development of anther by regulating GhFAD2-3 expression level to increase the oleic acid content. Conclusions Our work demonstrated the importance of C18:2 and/or C18:3 in development of pollen exine and anther cuticle in cotton, and provided clue for further investigation of the physiological significance of the fatty acid composition in plant growth and development.


2020 ◽  
Vol 21 (8) ◽  
pp. 2659
Author(s):  
Hong Zhang ◽  
Huan Guo ◽  
Weiguo Hu ◽  
Wanquan Ji

Growing interest and recent evidence have identified long non-coding RNA (lncRNA) as the potential regulatory elements for eukaryotes. LncRNAs can activate various transcriptional and post-transcriptional events that impact cellular functions though multiple regulatory functions. Recently, a large number of lncRNAs have also been identified in higher plants, and an understanding of their functional role in plant resistance to infection is just emerging. Here, we focus on their identification in crop plant, and discuss their potential regulatory functions and lncRNA-miRNA-mRNA network in plant pathogen stress responses, referring to possible examples in a model plant. The knowledge gained from a deeper understanding of this colossal special group of plant lncRNAs will help in the biotechnological improvement of crops.


Antioxidants ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 454 ◽  
Author(s):  
Balaji Aravindhan Pandian ◽  
Rajendran Sathishraj ◽  
Maduraimuthu Djanaguiraman ◽  
P.V. Vara Prasad ◽  
Mithila Jugulam

Cytochrome P450s (CYPs) are the largest enzyme family involved in NADPH- and/or O2-dependent hydroxylation reactions across all the domains of life. In plants and animals, CYPs play a central role in the detoxification of xenobiotics. In addition to this function, CYPs act as versatile catalysts and play a crucial role in the biosynthesis of secondary metabolites, antioxidants, and phytohormones in higher plants. The molecular and biochemical processes catalyzed by CYPs have been well characterized, however, the relationship between the biochemical process catalyzed by CYPs and its effect on several plant functions was not well established. The advent of next-generation sequencing opened new avenues to unravel the involvement of CYPs in several plant functions such as plant stress response. The expression of several CYP genes are regulated in response to environmental stresses, and they also play a prominent role in the crosstalk between abiotic and biotic stress responses. CYPs have an enormous potential to be used as a candidate for engineering crop species resilient to biotic and abiotic stresses. The objective of this review is to summarize the latest research on the role of CYPs in plant stress response.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Francisco X. Nascimento ◽  
Clarisse Brígido ◽  
Bernard R. Glick ◽  
Márcio J. Rossi

Symbiotic rhizobia-legumes associations are extremely important in terms of sustainable agricultural practices. This symbiosis involves a complex interaction between both partners, plant and bacterium, for bacterial infection and the formation of symbiotic N-fixing nodules. In this regard, the phytohormone ethylene plays a significant role in nodule formation, acting as an inhibitor of the nodulation process. Ethylene not only regulates nodule development but also regulates many other plant developmental cues, including various stress responses that inhibit overall plant growth. Some rhizobia produce the enzyme 1-aminocyclopropane-1-carboxylate (ACC) deaminase, thus, being able to decrease ACC and, consequently, decrease deleterious ethylene levels that affect the nodulation process. This occurs because ACC is the immediate precursor of ethylene in all higher plants. Hence, rhizobia that express this enzyme have an increased symbiotic potential. In addition to the direct role that ACC deaminase plays in the nodulation processper se, in a limited number of instances, ACC deaminase can also modulate nodule persistence. This review focuses on the important role of rhizobial ACC deaminase during the nodulation process, emphasizing its significance to legume growth promotion.


1996 ◽  
Vol 148 (3-4) ◽  
pp. 425-433 ◽  
Author(s):  
Thomas Rausch ◽  
Matthias Kirsch ◽  
Rawer Löw ◽  
Angelika Lehr ◽  
Ruth Viereck ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document