scholarly journals Pneumocystis jirovecii Colonization and Its Association with Pulmonary Diseases: a Multicenter Study Based on a Modified Loop-Mediated Isothermal Amplification Assay

2020 ◽  
Author(s):  
Ting Xue ◽  
Zhuang Ma ◽  
Fan Liu ◽  
Weiqin Du ◽  
Li He ◽  
...  

Abstract Background Pneumocystis jirovecii (P. jirovecii) is an opportunistic fungal pathogen and the role of its colonization in pulmonary diseases has become a popular focus in recent years. The aim of this study was to develop a modified loop-mediated isothermal amplification (LAMP) assay for detection of Pneumocystis jirovecii (P. jirovecii) DNA amongst non-HIV patients with various pulmonary diseases and use it to examine the prevalence and assess the association of P. jirovecii colonization with clinical characteristics of these diseases. Methods We modified the previously reported LAMP assay for P. jirovecii by adding real-time detection. This method was used to detect P. jirovecii colonization in pulmonary samples collected from 403 non-HIV patients with various pulmonary diseases enrolled from 5 hospitals in China. We determined the prevalence of P. jirovecii colonization in 7 types of pulmonary diseases and assessed the association of P. jirovecii colonization with clinical characteristics of these diseases. Results The modified LAMP assay showed no cross-reactivity with other common pulmonary microbes and was 1,000 times more sensitive than that of conventional PCR. Using the modified LAMP assay, we detected P. jirovecii colonization in 281 (69.7%) of the 403 patients enrolled. P. jirovecii colonization was more common in interstitial lung diseases than in chronic obstructive pulmonary disease (COPD) (84.6% vs 64.5%, P < 0.05). Patients with acute exacerbation of COPD had a higher prevalence of P. jirovecii colonization compared to patients with stabilized COPD (67.4% vs 43.3%, P < 0.05). P. jirovecii colonization was associated with decreased pulmonary function, increased levels of 1,3-β-D-glucan and C-reactive protein, and decreased levels of CD4+ T-cell counts (P < 0.05 for each). Approximately 70% of P. jirovecii colonized patients had confections with other fungi or bacteria. Conclusions We developed a modified LAMP assay for detecting P. jirovecii . Our multi-center study of 403 patients supports that P. jirovecii colonization is a risk factor for the development of pulmonary diseases and highlights the need to further study the pathogenesis and transmission of P. jirovecii colonization in pulmonary diseases.

2019 ◽  
Author(s):  
Ting Xue ◽  
Zhuang Ma ◽  
Fan Liu ◽  
Wei-Qin Du ◽  
Li He ◽  
...  

Abstract Background Pneumocystis jirovecii ( P. jirovecii ) is an opportunistic fungal pathogen and the role of its colonization in pulmonary diseases has become a popular focus in recent years. The aim of this study is to develop an improved loop-mediated isothermal amplification (LAMP) assay for detection of Pneumocystis jirovecii ( P. jirovecii ) DNA and use it to examine the prevalence and association of P. jirovecii colonization among non-HIV patients with various pulmonary diseases. Methods We modified the previously reported LAMP assay for P. jirovecii by adding real-time detection. This method was used to detect P. jirovecii colonization in pulmonary samples collected from 403 non-HIV patients with various pulmonary diseases enrolled from 5 hospitals in China. We determined the prevalence of P. jirovecii colonization in 7 types of pulmonary diseases and assessed the association of P. jirovecii colonization with clinical characteristics of these diseases. Results The new LAMP assay showed no cross-reactivity with other common pulmonary microbes and was 1,000 times more sensitive than that of conventional PCR. Using the new LAMP assay, we detected P. jirovecii colonization in 281 (69.7%) of the 403 patients enrolled. P. jirovecii colonization was more common in interstitial lung diseases than in chronic obstructive pulmonary disease (COPD) (84.6% vs 64.5%, P < 0.05). Patients with acute exacerbation of COPD had a higher prevalence of P. jirovecii colonization compared to patients with stabilized COPD (67.4% vs 43.3%, P < 0.05). P. jirovecii colonization was associated with decreased pulmonary function, increased levels of 1,3-β-D-glucan and C-reactive protein, and decreased levels of CD4+ T-cell counts (P < 0.05 for each). Approximately 70% of P. jirovecii colonized patients had confections with other fungi or bacteria. Conclusions We developed an improved LAMP assay for detecting P. jirovecii . Our multi-center study of 403 patients supports that P. jirovecii colonization is a risk factor for the development of pulmonary diseases and highlights the need to further study the pathogenesis and transmission of P. jirovecii colonization in pulmonary diseases.


2019 ◽  
Author(s):  
Ting Xue ◽  
Zhuang Ma ◽  
Fan Liu ◽  
Wei-Qin Du ◽  
Li He ◽  
...  

Abstract Abstract Background Pneumocystis jirovecii is an opportunistic pathogen fungus and the role of its colonization in respiratory diseases has become a popular focus in recent years. The aim of present study is to develop an improved loop-mediated isothermal amplification (LAMP) assay for detection of Pneumocystis jirovecii (P. jirovecii) DNA and use it to examine the prevalence and association of P. jirovecii colonization among non-HIV patients with various pulmonary diseases. Methods We modified the previously reported LAMP assay for P. jirovecii by adding real-time detection. This method was used to detect P. jirovecii colonization in respiratory samples collected from 403 non-HIV patients with various respiratory diseases enrolled from 5 hospitals in China. We determined the prevalence of P. jirovecii colonization in 7 types of pulmonary diseases and assessed the association of P. jirovecii colonization with clinical characteristics of these diseases. Results The new LAMP assay showed no cross-reactivity with other common respiratory microbes and was 1,000 times more sensitive than that of conventional PCR. Using the new LAMP assay, we detected P. jirovecii colonization in 281 (69.7%) of the 403 patients enrolled. P. jirovecii colonization was more common in interstitial lung diseases than in chronic obstructive pulmonary disease (COPD) (84.6% vs 64.5%, P < 0.05). Patients with acute exacerbation of COPD had a higher prevalence of P. jirovecii colonization compared to patients with stabilized COPD (67.4% vs 43.3%, P < 0.05). P. jirovecii colonization was associated with decreased pulmonary function, increased levels of 1,3-β-D-glucan and C-reactive protein, and decreased levels of CD4+ T-cell counts (P < 0.05 for each). Approximately 70% of P. jirovecii colonized patients had confections with other fungi or bacteria. Conclusions We developed an improved LAMP assay for detecting P. jirovecii. Our multi-center study of 403 patients supports that P. jirovecii colonization is a risk factor for the development of pulmonary diseases and highlights the need to further study the pathogenesis and transmission of P. jirovecii colonization in pulmonary diseases. Keywords: P. jirovecii; colonization; respiratory diseases; loop-mediated isothermal amplification.


2020 ◽  
Author(s):  
Ting Xue ◽  
Zhuang Ma ◽  
Fan Liu ◽  
Wei-Qin Du ◽  
Li He ◽  
...  

Abstract Background Pneumocystis jirovecii ( P. jirovecii ) is an opportunistic fungal pathogen and the role of its colonization in pulmonary diseases has become a popular focus in recent years. The aim of this study is to develop an improved loop-mediated isothermal amplification (LAMP) assay for detection of Pneumocystis jirovecii ( P. jirovecii ) DNA and use it to examine the prevalence and association of P. jirovecii colonization among non-HIV patients with various pulmonary diseases. Methods We modified the previously reported LAMP assay for P. jirovecii by adding real-time detection. This method was used to detect P. jirovecii colonization in pulmonary samples collected from 403 non-HIV patients with various pulmonary diseases enrolled from 5 hospitals in China. We determined the prevalence of P. jirovecii colonization in 7 types of pulmonary diseases and assessed the association of P. jirovecii colonization with clinical characteristics of these diseases. Results The new LAMP assay showed no cross-reactivity with other common pulmonary microbes and was 1,000 times more sensitive than that of conventional PCR. Using the new LAMP assay, we detected P. jirovecii colonization in 281 (69.7%) of the 403 patients enrolled. P. jirovecii colonization was more common in interstitial lung diseases than in chronic obstructive pulmonary disease (COPD) (84.6% vs 64.5%, P < 0.05). Patients with acute exacerbation of COPD had a higher prevalence of P. jirovecii colonization compared to patients with stabilized COPD (67.4% vs 43.3%, P < 0.05). P. jirovecii colonization was associated with decreased pulmonary function, increased levels of 1,3-β-D-glucan and C-reactive protein, and decreased levels of CD4+ T-cell counts (P < 0.05 for each). Approximately 70% of P. jirovecii colonized patients had confections with other fungi or bacteria. Conclusions We developed an improved LAMP assay for detecting P. jirovecii . Our multi-center study of 403 patients supports that P. jirovecii colonization is a risk factor for the development of pulmonary diseases and highlights the need to further study the pathogenesis and transmission of P. jirovecii colonization in pulmonary diseases.


2021 ◽  
Author(s):  
Chuan Wu ◽  
Yuanyuan Zeng ◽  
Yang He

Abstract Staphylococcus aureus is a common clinical bacterial pathogen that can cause a diverse range of infections. The establishment of a rapid and reliable assay for the early diagnosis and detection of S. aureus is of great significance. In this study, we developed a closed-tube loop-mediated isothermal amplification (LAMP) assay for the visual detection of S. aureus using the colorimetric indicator hydroxy naphthol blue (HNB). The LAMP reaction was optimized by adjusting the amplification temperature, the concentrations of Mg2+, dNTP, and HNB, and the incubation time. In the optimized reaction system, the specificity of LAMP for S. aureus was 100%. The results established that this method accurately identified S. aureus, with no cross-reactivity with 16 non-S. aureus strains. The limit of detection (LOD) of LAMP was 8 copies/reaction of purified plasmid DNA or 400 colony-forming units/reaction of S. aureus. Compared with conventional PCR, LAMP lowered the LOD by 10-fold. Finally, 220 clinically isolated strains of S. aureus and 149 non-S. aureus strains were used to evaluate the diagnostic efficacy of LAMP. The findings indicated that LAMP is a reliable test for S. aureus and could be a promising tool for the rapid diagnosis of S. aureus infections.


Author(s):  
Azeem Mehmood Butt ◽  
Shafiqa Siddique ◽  
Xiaoping An ◽  
Yigang Tong

AbstractSevere acute respiratory syndrome (SARS) coronavirus 2 (SARS-CoV-2) has emerged as a rapidly spreading global pathogen stressing the need for development of rapid testing protocols ever than before. The aim of present study was to develop a SARS-CoV-2 detection protocol which can be performed within minimal resources and timeframe. For this purpose, we implemented the reverse transcription loop-mediated isothermal amplification (RT-LAMP) methodology for the qualitative detection of SARS-CoV-2 RNA. In order to improve the detection capability, the RT-LAMP assay was developed to simultaneously amplify two viral genes: ORF1a and N. A total of 45 SARS-CoV-2 associated coronavirus disease 2019 (COVID-19) and 25 non-COVID-19 cases were enrolled. Viral RNA was extracted from the nasopharyngeal swab samples and analyzed simultaneously using PCR and RT-LAMP protocols. Overall, our SARS-CoV-2 dual gene RT-LAMP assay was found to be 95% accurate in detecting positive cases and showed no cross-reactivity or false-positive results in non-COVID-19 samples. Further evaluation on larger and multi-centric cohorts is currently underway to establish the diagnostic accuracy and subsequent implementation into clinical practice and at point-of-care settings.


2020 ◽  
Vol 21 (5) ◽  
pp. 1756 ◽  
Author(s):  
Sumyya Waliullah ◽  
Kai-Shu Ling ◽  
Elizabeth J. Cieniewicz ◽  
Jonathan E. Oliver ◽  
Pingsheng Ji ◽  
...  

A loop-mediated isothermal amplification (LAMP) assay was developed for simple, rapid and efficient detection of Cucurbit leaf crumple virus (CuLCrV), one of the most important begomoviruses that infects cucurbits worldwide. A set of six specific primers targeting a total 240 nt sequence regions in the DNA A of CuLCrV were designed and synthesized for detection of CuLCrV from infected leaf tissues using real-time LAMP amplification with the Genie® III system, which was further confirmed by gel electrophoresis and SYBR™ Green I DNA staining for visual observation. The optimum reaction temperature and time were determined, and no cross-reactivity was seen with other begomoviruses. The LAMP assay could amplify CuLCrV from a mixed virus assay. The sensitivity assay demonstrated that the LAMP reaction was more sensitive than conventional PCR, but less sensitive than qPCR. However, it was simpler and faster than the other assays evaluated. The LAMP assay also amplified CuLCrV-infected symptomatic and asymptomatic samples more efficiently than PCR. Successful LAMP amplification was observed in mixed virus-infected field samples. This simple, rapid, and sensitive method has the capacity to detect CuLCrV in samples collected in the field and is therefore suitable for early detection of the disease to reduce the risk of epidemics.


2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Preeti Singh ◽  
Sundeep Singh ◽  
Bijay Ranjan Mirdha ◽  
Randeep Guleria ◽  
Sanjay Kumar Agarwal ◽  
...  

Pneumocystis pneumonia (PCP) is one of the common opportunistic infection among HIV and non-HIV immunocompromised patients. The lack of a rapid and specific diagnostic test necessitates a more reliable laboratory diagnostic test for PCP. In the present study, the loop-mediated isothermal amplification (LAMP) assay was evaluated for the detection of Pneumocystis jirovecii. 185 clinical respiratory samples, including both BALF and IS, were subjected to GMS staining, nested PCR, and LAMP assay. Of 185 respiratory samples, 12/185 (6.5%), 41/185 (22.2%), and 49/185 (26.5%) samples were positive by GMS staining, nested PCR, and LAMP assay, respectively. As compared to nested PCR, additional 8 samples were positive by LAMP assay and found to be statistically significant (p<0.05) with the detection limit of 1 pg. Thus, the LAMP assay may serve as a better diagnostic tool for the detection of P. jirovecii with high sensitivity and specificity, less turn-around time, operational simplicity, single-step amplification, and immediate visual detection.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Silvia Gonçalves Mesquita ◽  
Floria Gabriela dos Santos Neves ◽  
Ronaldo Guilherme Carvalho Scholte ◽  
Omar dos Santos Carvalho ◽  
Cristina Toscano Fonseca ◽  
...  

Abstract Background Schistosomiasis a neglected tropical disease  endemic in Brazil. It is caused by the trematode Schistosoma mansoni, which is transmitted by snails of the genus Biomphalaria. Among measures used to control and eliminate schistosomiasis, accurate mapping and monitoring of snail breeding sites are recommended. Despite the limitations of parasitological methods, they are still used to identify infected snails. Loop-mediated isothermal amplification (LAMP) is a sensitive, rapid, and cost-effective diagnostic method for the identification of infected snails. In the work reported here, we aimed to validate the use of LAMP for the detection of S. mansoni in snails of the genus Biomphalaria. Methods Snails were collected in five municipalities of the Mucuri Valley and Jequitinhonha Valley regions in the state of Minas Gerais, Brazil. Snails were pooled according to collection site and then squeezed for the detection of S. mansoni and other trematode larvae. Pooled snails were subjected to pepsin digestion and DNA extraction. Molecular assays were performed for species-specific identification and characterization of the samples. A previously described LAMP assay was adapted, evaluated, and validated using laboratory and field samples. Results Using the parasitological method described here, S. mansoni cercariae were detected in snails from two collection sites, and cercariae of the family Spirorchiidae were found in snails from one site. The snails were identified by polymerase chain reaction (PCR)–restriction fragment length polymorphism (RFLP). Biomphalaria glabrata, the main snail host of S. mansoni in Brazil, was detected in 72.2% of the collection sites. Biomphalaria kuhniana, which is resistant to S. mansoni infection, was found in the remaining sites. Multiplex, low stringency (LS), and conventional PCR allowed the detection of positive snails in four additional sites. Trematodes belonging to the families Strigeidae and Echinostomatidae were detected by multiplex PCR in two sites. The LAMP assay was effective in detecting the presence of S. mansoni infection in laboratory (7 days post-infection) and field samples with no cross-reactivity for other trematodes. When compared to LS and conventional PCR, LAMP showed 100% specificity, 85.7% sensitivity, and a κ index of 0.88. Conclusions Our findings suggest that LAMP is a good alternative method for the detection and monitoring of transmission foci of S. mansoni, as it was three times as effective as the parasitological examination used here for the detection of infection, and is more directly applicable in the field than other molecular techniques. Graphical abstract


Author(s):  
Gun-Soo Park ◽  
Keunbon Ku ◽  
Seung-Hwa Baek ◽  
Seong Jun Kim ◽  
Seung Il Kim ◽  
...  

AbstractEpidemics of Coronavirus Disease 2019 (COVID-19) now have more than 100,000 confirmed cases worldwide. Diagnosis of COVID-19 is currently performed by RT-qPCR methods, but the capacity of RT-qPCR methods is limited by its requirement of high-level facilities and instruments. Here, we developed and evaluated RT-LAMP assays to detect genomic RNA of SARS-CoV-2, the causative virus of COVID-19. RT-LAMP assays in this study can detect as low as 100 copies of SARS-CoV-2 RNA. Cross-reactivity of RT-LAMP assays to other human Coronaviruses was not observed. We also adapted a colorimetric detection method for our RT-LAMP assay so that the tests potentially performed in higher throughput.


2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
Ibrahim N. Mwangi ◽  
Eric L. Agola ◽  
Robert M. Mugambi ◽  
Esther A. Shiraho ◽  
Gerald M. Mkoji

Human intestinal schistosomiasis is caused by the blood fluke, Schistosoma mansoni. With intensified efforts to control schistosomiasis by mass drug administration using praziquantel (PZQ), there is an urgent need to have accessible, quality-assured diagnostic tests for case detection and disease surveillance and for monitoring efficacy of treatment and other interventions. Current diagnostic tools are limited by suboptimal sensitivity, slow turn-around-time, affordability, and inability to distinguish current from past infections. We describe a simple and rapid diagnostic assay, based on the loop-mediated isothermal amplification (LAMP) technology for diagnosis of S. mansoni infection in human faecal samples. The LAMP primers used in this assay were previously described and they target a 121-bp DNA repeat sequence in S. mansoni. The LAMP assay was optimized at an isothermal temperature of 63°C for 1 hour. The amplified DNA was either visualized under ultraviolet light after electrophoresis or by directly observing the color change after staining the amplicons with CYBR Green dye. The LAMP assay was evaluated against the microscopy-based procedure and the results were analysed using Cohen’s kappa coefficient to determine the degree of agreement between the two techniques. The LAMP assay reliably detected S. mansoni ova DNA in faecal samples and parasite DNA in amounts as low as 32fg. When the assay was tested for specificity against other faecal-based soil-transmitted helminths (STH), no cross-reactivity was observed. The LAMP assay was superior to the Kato-Katz assay with a 97% specificity; a high positivity score reliably detecting S. mansoni and a Kappa Coefficient of 0.9 suggested an exceptional agreement between the two techniques. The LAMP assay developed has great potential for application in field settings to support S. mansoni control and elimination campaigns.


Sign in / Sign up

Export Citation Format

Share Document