scholarly journals Characterization of a vacuolar sucrose transporter, HbSUT5, from Hevea brasiliensis: involvement in latex production through regulation of intracellular sucrose transport in the bark and laticifers

2019 ◽  
Author(s):  
xiangyu long ◽  
Heping Li ◽  
Jianghua Yang ◽  
Lusheng Xin ◽  
Bin He ◽  
...  

Abstract Background: Sucrose (Suc), as the precursor molecule for rubber biosynthesis in Hevea brasiliensis, is transported via phloem-mediated long-distance transport from leaves to laticifers in trunk bark, where latex (cytoplasm of laticifers) is tapped for rubber. Suc transporters (SUTs) play important roles during various steps of Suc transport in higher plants. Results: In our previous report, six SUT genes have been cloned in Hevea tree, among which HbSUT3 has been verified to play an active role in Suc loading to the laticifers. In this study, another latex-abundant SUT isoform, HbSUT5, with expressions only inferior to HbSUT3 was characterized especially for its roles in latex production. Both phylogenetic analysis and subcellular localization identify HbSUT5 as a SUT4-clade (=type III) vacuolar membrane SUT, suggesting its potential participation in Suc exchange between lutoids (polydispersed microvacuoles) and cytosol in latex. Suc uptake assay in yeast identifies HbSUT5 as a typical Suc-H+ symporter, but the high affinity of HbSUT5 for Suc (Km = 2.03 mM at pH 5.5) and its similar efficiency in transporting maltose making it a peculiar SUT under the SUT4-clade. At the transcript level, HbSUT5 is abundantly and preferentially expressed in Hevea barks. It is contrary to HbSUT3 that the transcripts of HbSUT5 are obviously decreased both in Hevea latex and bark during the treatments of tapping and ethephon, indicating it counteracts the yield-stimulating effects of two treatments. Conclusions: A vacuolar sucrose transporter, HbSUT5, may play an important role in Suc exchange between lutoids (polydispersed vacuoles) and latex in laticifers. It is better to understand that the whole HbSUT family regulate and control Suc accumulation in laticifers, influencing rubber yield formation in Hevea.

2020 ◽  
Author(s):  
xiangyu long ◽  
Heping Li ◽  
Jianghua Yang ◽  
Lusheng Xin ◽  
Bin He ◽  
...  

Abstract Background: Sucrose (Suc), as the precursor molecule for rubber biosynthesis in Hevea brasiliensis , is transported via phloem-mediated long-distance transport from leaves to laticifers in trunk bark, where latex (cytoplasm of laticifers) is tapped for rubber. In our previous report, six Suc transporter (SUT) genes have been cloned in Hevea tree, among which HbSUT3 is verified to play an active role in Suc loading to the laticifers. In this study, another latex-abundant SUT isoform, HbSUT5 , with expressions only inferior to HbSUT3 was characterized especially for its roles in latex production. Results: Both phylogenetic analysis and subcellular localization identify HbSUT5 as a tonoplast-localized SUT protein under the SUT4-clade (=type III). Suc uptake assay in baker’s yeast reveals HbSUT5 to be a typical Suc-H + symporter, but its high affinity for Suc (Km = 2.03 mM at pH 5.5) and the similar efficiency in transporting both Suc and maltose making it a peculiar SUT under the SUT4-clade. At the transcript level, HbSUT5 is abundantly and preferentially expressed in Hevea barks. The transcripts of HbSUT5 are conspicuously decreased both in Hevea latex and bark by two yield-stimulating treatments of tapping and ethephon, the patterns of which are contrary to HbSUT3. Under the ethephon treatment, the Suc level in latex cytosol decreases significantly, but that in latex lutoids (polydispersed vacuoles) changes little, suggesting a role of the decreased HbSUT5 expression in Suc compartmentalization in the lutoids and thus enhancing the Suc sink strength in laticifers. Conclusions: Our findings provide insights into the roles of a vacuolar sucrose transporter, HbSUT5, in Suc exchange between lutoids and cytosol in rubber-producing laticifers.


2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Xiangyu Long ◽  
Heping Li ◽  
Jianghua Yang ◽  
Lusheng Xin ◽  
Yongjun Fang ◽  
...  

Abstract Background Sucrose (Suc), as the precursor molecule for rubber biosynthesis in Hevea brasiliensis, is transported via phloem-mediated long-distance transport from leaves to laticifers in trunk bark, where latex (cytoplasm of laticifers) is tapped for rubber. In our previous report, six Suc transporter (SUT) genes have been cloned in Hevea tree, among which HbSUT3 is verified to play an active role in Suc loading to the laticifers. In this study, another latex-abundant SUT isoform, HbSUT5, with expressions only inferior to HbSUT3 was characterized especially for its roles in latex production. Results Both phylogenetic analysis and subcellular localization identify HbSUT5 as a tonoplast-localized SUT protein under the SUT4-clade (=type III). Suc uptake assay in baker’s yeast reveals HbSUT5 to be a typical Suc-H+ symporter, but its high affinity for Suc (Km = 2.03 mM at pH 5.5) and the similar efficiency in transporting both Suc and maltose making it a peculiar SUT under the SUT4-clade. At the transcript level, HbSUT5 is abundantly and preferentially expressed in Hevea barks. The transcripts of HbSUT5 are conspicuously decreased both in Hevea latex and bark by two yield-stimulating treatments of tapping and ethephon, the patterns of which are contrary to HbSUT3. Under the ethephon treatment, the Suc level in latex cytosol decreases significantly, but that in latex lutoids (polydispersed vacuoles) changes little, suggesting a role of the decreased HbSUT5 expression in Suc compartmentalization in the lutoids and thus enhancing the Suc sink strength in laticifers. Conclusions Our findings provide insights into the roles of a vacuolar sucrose transporter, HbSUT5, in Suc exchange between lutoids and cytosol in rubber-producing laticifers.


2019 ◽  
Author(s):  
xiangyu long ◽  
Heping Li ◽  
Jianghua Yang ◽  
Lusheng Xin ◽  
Bin He ◽  
...  

Abstract Background: Sucrose (Suc), as the precursor molecule for rubber biosynthesis in Hevea brasiliensis, is transported via phloem-mediated long-distance transport from leaves to laticifers in trunk bark, where latex (cytoplasm of laticifers) is tapped for rubber. In our previous report, six SUT genes have been cloned in Hevea tree, among which HbSUT3 is verified to play an active role in Suc loading to the laticifers. In this study, another latex-abundant SUT isoform, HbSUT5, with expressions only inferior to HbSUT3 was characterized especially for its roles in latex production.Results: Both phylogenetic analysis and subcellular localization identify HbSUT5 as a tonoplast-localized SUT protein under the SUT4-clade (=type III). Suc uptake assay in baker’s yeast reveals HbSUT5 to be a typical Suc-H+ symporter, but its high affinity for Suc (Km = 2.03 mM at pH 5.5) and the similar efficiency in transporting both Suc and maltose making it a peculiar SUT under the SUT4-clade. At the transcript level, HbSUT5 is abundantly and preferentially expressed in Hevea barks. The transcripts of HbSUT5 are conspicuously decreased both in Hevea latex and bark by two yield-stimulating treatments of tapping and ethephon, the patterns of which are contrary to HbSUT3. Under the ethephon treatment, the Suc level in latex cytosol decreases significantly, but that in latex lutoids (polydispersed vacuoles) changes little, suggesting a role of the decreased HbSUT5 expression in Suc compartmentalization in the lutoids and thus enhancing the Suc sink strength in laticifers.Conclusions:Our findings provide insights into the roles of a vacuolar sucrose transporter, HbSUT5, in Suc exchange between lutoids and cytosol in rubber-producing laticifers.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Xiangyu Long ◽  
Heping Li ◽  
Jianghua Yang ◽  
Lusheng Xin ◽  
Yongjun Fang ◽  
...  

An amendment to this paper has been published and can be accessed via the original article.


Development ◽  
1999 ◽  
Vol 126 (20) ◽  
pp. 4405-4419 ◽  
Author(s):  
R. Ruiz-Medrano ◽  
B. Xoconostle-Cazares ◽  
W.J. Lucas

Direct support for the concept that RNA molecules circulate throughout the plant, via the phloem, is provided through the characterisation of mRNA from phloem sap of mature pumpkin (Cucurbita maxima) leaves and stems. One of these mRNAs, CmNACP, is a member of the NAC domain gene family, some of whose members have been shown to be involved in apical meristem development. In situ RT-PCR analysis revealed the presence of CmNACP RNA in the companion cell-sieve element complex of leaf, stem and root phloem. Longitudinal and transverse sections showed continuity of transcript distribution between meristems and sieve elements of the protophloem, suggesting CmNACP mRNA transport over long distances and accumulation in vegetative, root and floral meristems. In situ hybridization studies conducted on CmNACP confirmed the results obtained using in situ RT-PCR. Phloem transport of CmNACP mRNA was proved directly by heterograft studies between pumpkin and cucumber plants, in which CmNACP transcripts were shown to accumulate in cucumber scion phloem and apical tissues. Similar experiments were conducted with 7 additional phloem-related transcripts. Collectively, these studies established the existence of a system for the delivery of specific mRNA transcripts from the body of the plant to the shoot apex. These findings provide insight into the presence of a novel mechanism likely used by higher plants to integrate developmental and physiological processes on a whole-plant basis.


2020 ◽  
Vol 21 (9) ◽  
pp. 3249
Author(s):  
Styliani N. Chorianopoulou ◽  
Petros P. Sigalas ◽  
Niki Tsoutsoura ◽  
Anastasia Apodiakou ◽  
Georgios Saridis ◽  
...  

Sulfur is an essential macronutrient for growth of higher plants. The entry of the sulfate anion into the plant, its importation into the plastids for assimilation, its long-distance transport through the vasculature, and its storage in the vacuoles require specific sulfate transporter proteins. In this study, mycorrhizal and non-mycorrhizal maize plants were grown for 60 days in an S-deprived substrate, whilst iron was provided to the plants in the sparingly soluble form of FePO4. On day 60, sulfate was provided to the plants. The gene expression patterns of a number of sulfate transporters as well as sulfate assimilation enzymes were studied in leaves and roots of maize plants, both before as well as after sulfate supply. Prolonged sulfur deprivation resulted in a more or less uniform response of the genes’ expressions in the roots of non-mycorrhizal and mycorrhizal plants. This was not the case neither in the roots and leaves after the supply of sulfur, nor in the leaves of the plants during the S-deprived period of time. It is concluded that mycorrhizal symbiosis modified plant demands for reduced sulfur, regulating accordingly the uptake, distribution, and assimilation of the sulfate anion.


2010 ◽  
Vol 33 (10) ◽  
pp. 1708-1720 ◽  
Author(s):  
CHAORONG TANG ◽  
DEBAO HUANG ◽  
JIANGHUA YANG ◽  
SHUJIN LIU ◽  
SOULAÏMAN SAKR ◽  
...  

2006 ◽  
Vol 949 ◽  
Author(s):  
Vishnu Baba Sundaresan ◽  
Stephen Andrew Sarles ◽  
Brian J Goode ◽  
Donald J Leo

ABSTRACTIon transport across cell membranes happens through protein channels and pumps expending concentration gradients, electrical gradients and energy from chemical reactions. Ion exchange in cell membranes is responsible for nutrient transport from production sites to where they are broken down to release energy. Sucrose transport is vital for growth in higher plants and recent research has led to the discovery of a class of sugar carriers called SUT4. The SUT4 transporter is a low affinity, high capacity proton-sucrose transporter that participates in long distance sucrose transport in higher plants. We demonstrated the possibility to use purified SUT4 transporter proteins — with the genetic code from Arabidopsis thaliana expressed on yeast cells — for fluid transport driven by pH gradient and from exergonic ATP hydrolysis reaction in the presence of ATP-ase enzyme. The SUT4 proteins were reconstituted on a planar bilayer lipid membrane formed from 1-Palmitoyl-2-Oleoyl-sn-Glycero-3-[Phospho-L-Serine] (Sodium Salt) (POPS), 1-Palmitoyl-2-Oleoyl-sn-Glycero- 3-Phosphoethanolamine (POPE) phospholipids on a porous substrate. This article builds upon our previous work to harness energy from the ATP-ase reaction using SUT4 to produce a proton current through SUT4 and demonstrates the technical feasibility to generate electrical current in an external circuit. The results from our characterization experiments on a single cell demonstrate that the power source behaves like a constant current power source with an internal resistance of 10-22 kΩ and produces a peak power of 150 nW.


1991 ◽  
Vol 69 (1) ◽  
pp. 87-94 ◽  
Author(s):  
Ben A. Faber ◽  
Robert J. Zasoski ◽  
Donald N. Munns ◽  
Kenneth Shackel

A new system was designed that permits examination of long distance transport of water and nutrients through mycorrhizal hyphae without the architectural, nutritional, and physiological differences associated with comparing mycorrhizal and non-mycorrhizal plants. The "rhizobox" system consists of a rectangular box with a chamber where mycorrhizal plants are grown and an outer chamber where hyphae proliferate. The two chambers are separated by root-excluding screens and an air gap. Two slightly different experiments examined hyphal transport. The first experiment demonstrated the difficulties of comparing water use by mycorrhizal and nonmycorrhizal plants because of dissimilarities in plant architecture. The second experiment avoided the problem by comparing intact mycorrhizal plants with plants where hyphae passing to the outer chamber were severed. In the outer chamber, a 5 mM solution of RbCl was injected. Intact mycorrhizal plants transpired 35% more water than plants with severed hyphae in 16 h. The source of transpired water was the outer chamber, as suggested by lower soil moisture in the outer chamber and a higher Rb content in intact plants. This demonstrates an active role in water and nutrient transport by mycorrhizal hyphae, since plants were of a similar nature except for hyphal access to the outer chamber. Key words: water transport, mycorrhizal plants, rhizobox system, nutrient transport, hyphae.


2000 ◽  
Vol 27 (6) ◽  
pp. 583 ◽  
Author(s):  
Hanjo Hellmann ◽  
Laurence Barker ◽  
Dietmar Funck ◽  
Wolf B. Frommer

In higher plants, sugars possess multiplefunctions: transport and storage of carbon and energy as well as signalmolecules. A variety of sugar transporters have been cloned that showdifferential expression between source and sink tissues. Expression of thesetransporters is highly regulated, according to the local metabolic status andthe demands of long distance transport. Very little knowledge is available onmechanisms underlying the regulation of sugar transporter expression inplants. Studies in E. coli, yeast and mammals haveunravelled complex regulatory pathways with crosstalk between sugar transportand metabolism. Recent studies in plants provide increasing evidence for theexistence of similar regulatory mechanisms. In many cases, connections havebeen found between C-and N-metabolism, implicating a tight network of signaltransduction and metabolism. Some aspects of this network are presented inthis review, emphasising sugar transport and sugar signaltransduction.


Sign in / Sign up

Export Citation Format

Share Document