scholarly journals Molecular cytogenetics of valuable Arctic and sub-Arctic pasture grass species from the Aveneae/Poeae tribe complex (Poaceae)

2019 ◽  
Author(s):  
Alexandra V. Amosova ◽  
Svyatoslav A. Zoshchuk ◽  
Alexander V. Rodionov ◽  
Lilit Ghukasyan ◽  
Tatiana E. Samatadze ◽  
...  

Abstract Background Grasslands in the Arctic tundra undergo irreversible degradation due to climatic changes and also over-exploitation and depletion of scarce resources. Comprehensive investigations of cytogenomic structures of valuable Arctic and sub-Arctic grassland species is essential for clarifying their genetic peculiarities and phylogenetic relationships and also successful developing new forage grass cultivars with high levels of adaptation, stable productivity and longevity. We performed molecular cytogenetic characterization of seven insufficiently studied pasture grass species from related genera Alopecurus, Arctagrostis, Beckmannia, Deschampsia and Holcus (Poaceae) which are the primary fodder resources in the Arctic tundra. Results For these species, integrated schematic habitat maps were constructed based on the available data on their distribution in Eurasia. The species karyotypes were examined with the use of DAPI-banding, fluorescence in situ hybridization with 35S rDNA, 5S rDNA and the (GTT)9 microsatellite motif and also sequential rapid genomic in situ hybridization with genomic DNAs of Deschampsia sukatschewii, Holcus lanatus and Deschampsia flexuosa. Cytogenomic structures of the studied species were specified; peculiarities and common features of their genomes were revealed. Different chromosomal rearrangements were detected in Beckmannia syzigachne, Deschampsia cespitosa and D. flexuosa; B chromosomes with distinct DAPI-bands were observed in karyotypes of D. cespitosa and H. lanatus. Conclusions The peculiarities of distribution patterns of the examined chromosomal markers and also presence of common homologous DNA repeats in karyotypes of the studies species allowed us to verify their relationships. The obtained unique data on distribution areas and cytogenomic structures of the valuable Arctic and sub-Arctic pasture species are important for further genetic and biotechnological studies and also plant breeding progress.

BMC Genetics ◽  
2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Alexandra V. Amosova ◽  
Svyatoslav A. Zoshchuk ◽  
Alexander V. Rodionov ◽  
Lilit Ghukasyan ◽  
Tatiana E. Samatadze ◽  
...  

Abstract Background Grasslands in the Arctic tundra undergo irreversible degradation due to climatic changes and also over-exploitation and depletion of scarce resources. Comprehensive investigations of cytogenomic structures of valuable Arctic and sub-Arctic grassland species is essential for clarifying their genetic peculiarities and phylogenetic relationships, and also successful developing new forage grass cultivars with high levels of adaptation, stable productivity and longevity. We performed molecular cytogenetic characterization of insufficiently studied pasture grass species (Poaceae) from related genera representing two neighboring clades: 1) Deschampsia and Holcus; 2) Alopecurus, Arctagrostis and Beckmannia, which are the primary fodder resources in the Arctic tundra. Results We constructed the integrated schematic maps of distribution of these species in the northern, central and eastern parts of Eurasia based on the currently available data as only scattered data on their occurrence is currently available. The species karyotypes were examined with the use of DAPI-banding, multicolour FISH with 35S rDNA, 5S rDNA and the (GTT)9 microsatellite motif and also sequential rapid multocolour GISH with genomic DNAs of Deschampsia sukatschewii, Deschampsia flexuosa and Holcus lanatus belonging to one of the studied clades. Cytogenomic structures of the species were specified; peculiarities and common features of their genomes were revealed. Different chromosomal rearrangements were detected in Beckmannia syzigachne, Deschampsia cespitosa and D. flexuosa; B chromosomes with distinct DAPI-bands were observed in karyotypes of D. cespitosa and H. lanatus. Conclusions The peculiarities of distribution patterns of the examined chromosomal markers and also presence of common homologous DNA repeats in karyotypes of the studies species allowed us to verify their relationships. The obtained unique data on distribution areas and cytogenomic structures of the valuable Arctic and sub-Arctic pasture species are important for further genetic and biotechnological studies and also plant breeding progress.


2019 ◽  
Author(s):  
Alexandra V. Amosova ◽  
Svyatoslav A. Zoshchuk ◽  
Alexander V. Rodionov ◽  
Lilit Ghukasyan ◽  
Tatiana E. Samatadze ◽  
...  

Abstract Grasslands in the Arctic tundra undergo irreversible degradation due to climatic changes and also over-exploitation and depletion of scarce resources. Comprehensive investigations of cytogenomic structures of valuable Arctic and sub-Arctic grassland species is essential for clarifying their genetic peculiarities and phylogenetic relationships, and also successful developing new forage grass cultivars with high levels of adaptation, stable productivity and longevity. We performed molecular cytogenetic characterization of insufficiently studied pasture grass species (Poaceae) from related genera representing two neighboring clades: 1) Deschampsia and Holcus; 2) Alopecurus, Arctagrostis and Beckmannia, which are the primary fodder resources in the Arctic tundra.


Genes ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 966
Author(s):  
Zuzana Chumová ◽  
Terezie Mandáková ◽  
Pavel Trávníček

Polyploidy has played a crucial role in the evolution of many plant taxa, namely in higher latitudinal zones. Surprisingly, after several decades of an intensive research on polyploids, there are still common polyploid species whose evolutionary history is virtually unknown. Here, we addressed the origin of sweet vernal grass (Anthoxanthum odoratum) using flow cytometry, DNA sequencing, and in situ hybridization-based cytogenetic techniques. An allotetraploid and polytopic origin of the species has been verified. The chromosome study reveals an extensive variation between the European populations. In contrast, an autopolyploid origin of the rarer tetraploid vernal grass species, A. alpinum, has been corroborated. Diploid A. alpinum played an essential role in the polyploidization of both European tetraploids studied.


Animals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 2106
Author(s):  
Barbara Kij-Mitka ◽  
Halina Cernohorska ◽  
Svatava Kubickova ◽  
Sylwia Prochowska ◽  
Wojciech Niżański ◽  
...  

Fluorescence in situ hybridization is a molecular cytogenetics technique that enables the visualization of chromosomes in cells via fluorescently labeled molecular probes specific to selected chromosomes. Despite difficulties in carrying out the FISH technique on sperm, related to the need for proper nuclear chromatin decondensation, this technique has already been used to visualize chromosomes in human, mouse, cattle, swine, horse, and dog spermatozoa. Until now, FISH has not been performed on domestic cat sperm; therefore, the aim of this study was to visualize sex chromosomes in domestic cat sperm. The results showed the presence of X and Y chromosomes in feline spermatozoa. The procedure used for sperm decondensation and fluorescence in situ hybridization was adequate to visualize chromosomes in domestic cat spermatozoa and, in the future, it may be used to determine the degree of chromosomal abnormalities in these gametes.


Sociobiology ◽  
2018 ◽  
Vol 65 (4) ◽  
pp. 696 ◽  
Author(s):  
Vanderly Andrade-Souza ◽  
Olivia Maria Pereira Duarte ◽  
Cinthia Caroline Cardoso Martins ◽  
Igor Silva Santos ◽  
Márcio Gilberto Cardoso Costa ◽  
...  

Cytogenetic studies in Melipona are scarce with only 24 species analyzed cytogenetically. Of these, six species had the rDNA sites physically mapped and characterized by Fluorescent in situ Hybridization (fish). The aim of this study was to perform karyotype analyzes on Melipona species from different regions of Brazil, with a greater sampling representative of the Amazonian fauna and using conventional, fluorochrome staining and FISH with heterologous rDNA probes. The predominant chromosome number was 2n = 18, however, the subspecies M. seminigra abunensis and M. s. pernigra showed 2n = 22 chromosomes. The karyotypes were symmetrical, however M. bicolor, M. quadrifasciata, M. flavolineata, M. fuscopilosa, M. nebulosa presented the first pair heteromorphic in length. CMA3+ blocks also exhibited heteromorphism of size and in almost all cases coincided with rDNA sites, except for M. crinita and M. nebulosa, which presented additional non-coincident CMA3+ blocks. The CMA/ rDNA sites were terminal and interstitial in species with high heterochromatic content, and pericentromeric in those species with low heterochromatic content. In addition to pointing out cytogenetic features of cytotaxonomic importance, the reorganization of the genome in Melipona is discussed.


2000 ◽  
Vol 23 (3) ◽  
pp. 531-533 ◽  
Author(s):  
Maria de Lourdes L.F. Chauffaille ◽  
Eliana Azevedo Marques ◽  
Jose Salvador Rodrigues de Oliveira ◽  
Maria Madalena Rodrigues ◽  
Maria Stella Figueiredo ◽  
...  

Chronic lymphocytic leukemia (CLL) presents a varying incidence of karyotypic abnormalities whose detection is complicated by difficulties in obtaining mitosis for analysis in this type of mature lymphocyte disorder. Since the introduction of molecular cytogenetics (FISH = fluorescent in situ hybridization), applying centromeric probes for chromosome 12 has made it possible to detect a higher percentage of trisomy 12 cases. The objective of the present study was to detect trisomy 12 by FISH (alpha satellite probe) in 13 patients with CLL whose karyotypes by G-banding were either normal or inadequate. Using this method trisomy 12 was detected in three patients in a percentage of positive cells varying from 55.5% to 79%, showing that FISH is a sensitive and highly specific method for trisomy detection and should be routinely performed when the karyotype is normal.


Genome ◽  
1996 ◽  
Vol 39 (3) ◽  
pp. 535-542 ◽  
Author(s):  
Concha Linares ◽  
Juan González ◽  
Esther Ferrer ◽  
Araceli Fominaya

A physical map of the locations of the 5S rDNA genes and their relative positions with respect to 18S–5.8S–26S rDNA genes and a C genome specific repetitive DNA sequence was produced for the chromosomes of diploid, tetraploid, and hexaploid oat species using in situ hybridization. The A genome diploid species showed two pairs of rDNA loci and two pairs of 5S loci located on both arms of one pair of satellited chromosomes. The C genome diploid species showed two major pairs and one minor pair of rDNA loci. One pair of subtelocentric chromosomes carried rDNA and 5S loci physically separated on the long arm. The tetraploid species (AACC genomes) arising from these diploid ancestors showed two pairs of rDNA loci and three pairs of 5S loci. Two pairs of rDNA loci and 2 pairs of 5S loci were arranged as in the A genome diploid species. The third pair of 5S loci was located on one pair of A–C translocated chromosomes using simultaneous in situ hybridization with 5S rDNA genes and a C genome specific repetitive DNA sequence. The hexaploid species (AACCDD genomes) showed three pairs of rDNA loci and six pairs of 5S loci. One pair of 5S loci was located on each of two pairs of C–A/D translocated chromosomes. Comparative studies of the physical arrangement of rDNA and 5S loci in polyploid oats and the putative A and C genome progenitor species suggests that A genome diploid species could be the donor of both A and D genomes of polyploid oats. Key words : oats, 5S rDNA genes, 18S–5.8S–26S rDNA genes, C genome specific repetitive DNA sequence, in situ hybridization, genome evolution.


Genes ◽  
2019 ◽  
Vol 10 (5) ◽  
pp. 375 ◽  
Author(s):  
Xiaomei Luo ◽  
Juncheng Liu

We report the cytogenetic map for a collection of species in the Oleaceae, and test similarities among the karyotypes relative to their known species phylogeny. The oligonucleotides 5S ribosomal DNA (rDNA), (AGGGTTT)3, and (TTG)6 were used as fluorescence in situ hybridization (FISH) probes to locate the corresponding chromosomes in three Oleaceae genera: Fraxinus pennsylvanica, Syringa oblata, Ligustrum lucidum, and Ligustrum × vicaryi. Forty-six small chromosomes were identified in four species. (AGGGTTT)3 signals were observed on almost all chromosome ends of four species, but (AGGGTTT)3 played no role in distinguishing the chromosomes but displayed intact chromosomes and could thus be used as a guide for finding chromosome counts. (TTG)6 and 5S rDNA signals discerned several chromosomes located at subterminal or central regions. Based on the similarity of the signal pattern (mainly in number and location and less in intensity) of the four species, the variations in the 5S rDNA and (TTG)6 distribution can be ordered as L. lucidum < L. × vicaryi < F. pennsylvanica < S. oblata. Variations have observed in the three genera. The molecular cytogenetic data presented here might serve as a starting point for further larger-scale elucidation of the structure of the Oleaceae genome, and comparison with the known phylogeny of Oleaceae family.


Genome ◽  
1999 ◽  
Vol 42 (1) ◽  
pp. 52-59 ◽  
Author(s):  
S N Raina ◽  
Y Mukai

In order to obtain new information on the genome organization of Arachis ribosomal DNA, more particularly among A. hypogaea and its close relatives, the distribution of the 18S-5.8S-26S and 5S ribosomal RNA gene families on the chromosomes of 21 diploid and tetraploid Arachis species, selected from six of nine taxonomic sections, was analyzed by in situ hybridization with pTa71 (18S-5.8S-26S rDNA) and pTa794 (5S rDNA) clones. Two major 18S-5.8S-26S rDNA loci with intense signals were found in the nucleolus organizer regions (NOR) of each of the diploid and tetraploid species. In addition to extended signals at major NORs, two to six medium and (or) minute-sized signals were also observed. Variability in the number, size, and location of 18S-5.8S-26S sites could generally distinguish species within the same genome as well as between species with different genomes. The use of double fluorescence in situ hybridization enabled us to locate the positions of 5S rRNA genes in relation to the chromosomal location of 18S-5.8S-26S rRNA genes in Arachis chromosomes which were difficult to karyotype. Two or four 5S rDNA loci and 18S-5.8S-26S rDNA loci were generally located on different chromosomes. The tandemly repeated 5S rDNA sites were diagnostic for T and C genomes. In one species, each of B and Am genomes, the two ribosomal gene families were observed to occur at the same locus. Barring A. ipaensis and A. valida, all the diploid species had characteristic centromeric bands in all the 20 chromosomes. In tetraploid species A. hypogaea and A. monticola only 20 out of 40 chromosomes showed centromeric bands. Comparative studies of distribution of the two ribosomal gene families, and occurrence of centromeric bands in only 20 chromosomes of the tetraploid species suggests that A. villosa and A. ipaensis are the diploid progenitors of A. hypogaea and A. monticola. This study excludes A. batizocoi as the B genome donor species for A. hypogaea and A. monticola.Key words: Arachis species, 5S rRNA, 18S-5.8S-26S rRNA, in situ hybridization, evolution.


Sign in / Sign up

Export Citation Format

Share Document