scholarly journals Unique miRNAs and their targets in tomato leaf responding to combined drought and heat stress

2019 ◽  
Author(s):  
Rong Zhou ◽  
Xiaqing Yu ◽  
Carl-Otto Ottosen ◽  
Tingling Zhang ◽  
Zhen Wu ◽  
...  

Abstract Background: Both drought and heat stress are serious global problems, leading to agricultural production loss. MicroRNAs (miRNAs) play important roles in plant species responding to individual drought and heat stress. However, the miRNAs and mRNAs in association with combined drought and heat in crops like tomato remains unclear. Results: We studied the crosstalk of miRNAs and their target genes in tomato plants grown under simultaneous drought and heat stress that frequently happen in field conditions. In total, 335 known miRNAs representing 55 miRNA families and 430 potential novel miRNAs were identified in Solanum lycopersicum L. using small RNA deep sequencing. Through expression analysis, miRNAs in association with drought, heat and the combination of these were investigated. In total, 61, 74 and 37 miRNAs were differentially regulated for combination (of both stresses) vs control, combination vs drought and combination vs heat, respectively. Target genes with different expression levels were found using degradome sequencing, which were mainly involved in transcription factor activity, sequence-specific DNA binding, transcription, regulation of transcription, nucleus, DNA binding etc . The quantitative real-time polymerase chain reaction (qRT-PCR) results confirmed the accuracy of sequencing. Conclusions: Our study serves as valuable knowledge on how crop adapted to combined drought and heat stress by regulating miRNAs and mRNAs, which provide information for crop improvement to deal with future climate changes. Keywords: Solanum lycopersicum L.; miRNAs; degradome; functional analysis; combined abiotic stress

2020 ◽  
Author(s):  
Rong Zhou ◽  
Xiaqing Yu ◽  
Carl-Otto Ottosen ◽  
Tingling Zhang ◽  
Zhen Wu ◽  
...  

Abstract Background: Both drought and heat stress are serious global problems, leading to agricultural production loss. MicroRNAs (miRNAs) play important roles in plant species responding to individual drought and heat stress. However, the miRNAs and mRNAs in association with combined drought and heat in crops like tomato remains unclear. Results: We studied the crosstalk of miRNAs and their target genes in tomato plants grown under simultaneous drought and heat stress that frequently happen in field conditions. In total, 335 known miRNAs representing 55 miRNA families and 430 potential novel miRNAs were identified in Solanum lycopersicum L. using small RNA deep sequencing. Through expression analysis, miRNAs in association with drought, heat and the combination of these were investigated. In total, 61, 74 and 37 miRNAs were differentially regulated for combination (of both stresses) vs control, combination vs drought and combination vs heat, respectively. Target genes with different expression levels were found using degradome sequencing, which were mainly involved in transcription factor activity, sequence-specific DNA binding, transcription, regulation of transcription, nucleus, DNA binding etc . The quantitative real-time polymerase chain reaction (qRT-PCR) results confirmed the accuracy of sequencing. Conclusions: Our study serves as valuable knowledge on how crop adapted to combined drought and heat stress by regulating miRNAs and mRNAs, which provide information for crop improvement to deal with future climate changes. Keywords: Solanum lycopersicum L.; miRNAs; degradome; functional analysis; combined abiotic stress


2020 ◽  
Author(s):  
Rong Zhou ◽  
Xiaqing Yu ◽  
Carl-Otto Ottosen ◽  
Tingling Zhang ◽  
Zhen Wu ◽  
...  

Abstract Background: Both drought and heat stress are serious global problems, leading to agricultural production loss. MicroRNAs (miRNAs) play important roles in plant species responding to individual drought and heat stress. However, the miRNAs and mRNAs in association with combined drought and heat in crops like tomato remains unclear. Results: We studied the crosstalk of miRNAs and their target genes in tomato plants grown under simultaneous drought and heat stress that frequently happen in field conditions. In total, 335 known miRNAs representing 55 miRNA families and 430 potential novel miRNAs were identified in Solanum lycopersicum L. using small RNA deep sequencing. Through expression analysis, miRNAs in association with drought, heat and the combination of these were investigated. In total, 61, 74 and 37 miRNAs were differentially regulated for combination (of both stresses) vs control, combination vs drought and combination vs heat, respectively. Target genes with different expression levels were found using degradome sequencing, which were mainly involved in transcription factor activity, sequence-specific DNA binding, transcription, regulation of transcription, nucleus, DNA binding etc . The quantitative real-time polymerase chain reaction (qRT-PCR) results confirmed the accuracy of sequencing. Conclusions: Our study serves as valuable knowledge on how crop adapted to combined drought and heat stress by regulating miRNAs and mRNAs, which provide information for crop improvement to deal with future climate changes. Keywords: Solanum lycopersicum L.; miRNAs; degradome; functional analysis; combined abiotic stress


2019 ◽  
Author(s):  
Rong Zhou ◽  
Xiaqing Yu ◽  
Carl-Otto Ottosen ◽  
Tingling Zhang ◽  
Zhen Wu ◽  
...  

Abstract Background: Both drought and heat stress are serious global problems, leading to agricultural production loss. MicroRNAs (miRNAs) play important roles in plant species responding to individual drought and heat stress. However, the miRNAs and mRNAs in association with combined drought and heat in crops like tomato remains unclear. Results: We studied the crosstalk of miRNAs and their target genes in tomato plants grown under simultaneous drought and heat stress that frequently happen in field conditions. In total, 335 known miRNAs representing 55 miRNA families and 430 potential novel miRNAs were identified in Solanum lycopersicum L. using small RNA deep sequencing. Through expression analysis, miRNAs in association with drought, heat and the combination of these were investigated. In total, 61, 74 and 37 miRNAs were differentially regulated for combination (of both stresses) vs control, combination vs drought and combination vs heat, respectively. Target genes with different expression levels were found using degradome sequencing, which were mainly involved in transcription factor activity, sequence-specific DNA binding, transcription, regulation of transcription, nucleus, DNA binding etc . The quantitative real-time polymerase chain reaction (qRT-PCR) results confirmed the accuracy of sequencing. Conclusions: Our study serves as valuable knowledge on how crop adapted to combined drought and heat stress by regulating miRNAs and mRNAs, which provide information for crop improvement to deal with future climate changes.


Cells ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 1749 ◽  
Author(s):  
Rakesh K. Upadhyay ◽  
Tahira Fatima ◽  
Avtar K. Handa ◽  
Autar K. Mattoo

Polyamines (PAs) regulate growth in plants and modulate the whole plant life cycle. They have been associated with different abiotic and biotic stresses, but little is known about the molecular regulation involved. We quantified gene expression of PA anabolic and catabolic pathway enzymes in tomato (Solanum lycopersicum cv. Ailsa Craig) leaves under heat versus cold stress. These include arginase 1 and 2, arginine decarboxylase 1 and 2, agmatine iminohydrolase/deiminase 1, N-carbamoyl putrescine amidase, two ornithine decarboxylases, three S-adenosylmethionine decarboxylases, two spermidine synthases; spermine synthase; flavin-dependent polyamine oxidases (SlPAO4-like and SlPAO2) and copper dependent amine oxidases (SlCuAO and SlCuAO-like). The spatiotemporal transcript abundances using qRT-PCR revealed presence of their transcripts in all tissues examined, with higher transcript levels observed for SAMDC1, SAMDC2 and ADC2 in most tissues. Cellular levels of free and conjugated forms of putrescine and spermidine were found to decline during heat stress while they increased in response to cold stress, revealing their differential responses. Transcript levels of ARG2, SPDS2, and PAO4-like increased in response to both heat and cold stresses. However, transcript levels of ARG1/2, AIH1, CPA, SPDS1 and CuAO4 increased in response to heat while those of ARG2, ADC1,2, ODC1, SAMDC1,2,3, PAO2 and CuPAO4-like increased in response to cold stress, respectively. Transcripts of ADC1,2, ODC1,2, and SPMS declined in response to heat stress while ODC2 transcripts declined under cold stress. These results show differential expression of PA metabolism genes under heat and cold stresses with more impairment clearly seen under heat stress. We interpret these results to indicate a more pronounced role of PAs in cold stress acclimation compared to that under heat stress in tomato leaves.


2021 ◽  
Author(s):  
Oluwaseun Johnson Akinlade ◽  
Kai Voss-Fels ◽  
Roy Costilla ◽  
Jana Kholova ◽  
Sunita Choudhary ◽  
...  

Abstract Chickpea (Cicer arietinum L.) is one of the most important grain legumes in the world, but its current and future production is threatened due to the increased incidence of drought and heat stress. To address this challenge, an integrated crop improvement strategy encompassing breeding, genomics, physiology and agronomy is required. Here, we review the physiological traits known to confer drought and heat adaptation in chickpea and identify areas of drought and heat adaptation research that should be prioritised in the future. Furthermore, we underscore approaches to efficiently phenotype chickpea adaptation traits and highlight the significant challenges and importance of understanding the nexus between canopy and root development. Finally, we present the opportunity to adopt multi-trait genomic prediction approaches to efficiently utilise key physiological traits, that can be assayed using high-throughput phenotyping platforms, to accelerate genetic gain in drought and heat prone environments.


Sign in / Sign up

Export Citation Format

Share Document