scholarly journals Genome-wide analysis of basic helix-loop-helix (bHLH) transcription factors in papaya (Carica papaya L.)

2019 ◽  
Author(s):  
Min Yang ◽  
Hu Yang ◽  
Ruibin Kuang ◽  
Chenping Zhou ◽  
Bingxiong Huang ◽  
...  

Abstract Background : As a superfamily of transcription factors (TFs), the basic helix-loop-helix (bHLH) proteins have been identified and functionally characterized in many plants. However, no comprehensive analysis of the bHLH family in papaya ( Carica papaya L. ) has been reported previously. Results: In this study, a total of 73 CpbHLH genes were found in papaya, and these genes were classified into 18 subfamilies based on phylogenetic analysis, with one orphans. Almost all of the CpbHLH in the same subfamily shared similar gene structures and protein motifs according to an analysis of exon/intron organizations and motif compositions. The number of exons in CpbHLH genes varied from 1 to 11 with an average of 5. The amino acid sequences of the bHLH domains were quite conservative, especially Leu-27 and Leu-63. Promoter cis -element analysis revealed that most of the CpbHLH genes contained cis -elements that can respond to various biotic/abiotic stress-related events. Gene ontology (GO) analysis revealed that Cp bHLH mainly functions in protein dimerization activity and DNA-binding, and most Cp bHLH proteins were predicted to localize in the nucleus. Abiotic stress treatment and quantitative real-time PCR (qRT-PCR) revealed some predicted CpbHLH genes that might be responsible for abiotic stress responses in papaya. Conclusions : A total of 73 bHLH transcription factors were identified from papaya, and their gene structures, conserved domains, sequence features, phylogenetic relationship, promoter cis -element, GO annotation and gene expression profiles responsible for abiotic stress were investigated. Our findings lay a foundation for further evolutionary and functional elucidation of Cp bHLHs. Keywords : papaya, genome-wide analysis, bHLH transcription factors, abiotic stress

2020 ◽  
Author(s):  
Xiaoyan Quan ◽  
Xiaoli Liang ◽  
Chunjuan Xie ◽  
Ning Yin ◽  
Ning Zhang ◽  
...  

Abstract Background: Improvement of low nitrogen (LN) tolerance or nitrogen use efficiency (NUE) in crops is imperative for environment-friendly agriculture development. The basic helix–loop–helix (bHLH) transcription factors are involved in multiple abiotic stress, suitable as the candidate genes for improving LN tolerance. Little research was done on characterization of bHLH gene family and their response to LN stress in barley.Results: In this study, 168 bHLH genes were identified in barley through genome-wide analysis. HvbHLH proteins were classified into 26 subfamilies based on phylogenetic analysis with bHLH proteins from Arabidopsis thaliana and rice. The analysis of conserved motifs and gene structures supported the evolutionary relationships among these HvbHLH proteins. Further, analysis of stress-related cis-elements in the promoter regions showed that bHLH proteins in barley are probably involved in multiple stress responses. Finally, at least 16 bHLH genes were differentially expressed in two barley genotypes differing in LN tolerance under LN stress. Dynamic expression analysis showed that these differentially expressed genes (DEGs) differed between the two barley genotypes in response to LN stress.Conclusion: It is the first genome-wide analysis of bHLH family genes in response to LN stress in barley. The results indicate the distinct difference among HvbHLH genes in response to various abiotic stresses. The HvbHLHs specifically expressed in the LN-tolerant barley genotype XZ149 identified herein may be valuable for future function analysis of HvbHLH genes under LN stress and breeding for barley cultivars with LN tolerance.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e9319
Author(s):  
Min Yang ◽  
Chenping Zhou ◽  
Hu Yang ◽  
Ruibin Kuang ◽  
Bingxiong Huang ◽  
...  

The basic helix-loop-helix (bHLH) transcription factors (TFs) have been identified and functionally characterized in many plants. However, no comprehensive analysis of the bHLH family in papaya (Carica papaya L.) has been reported previously. Here, a total of 73 CpbHLHs were identified in papaya, and these genes were classified into 18 subfamilies based on phylogenetic analysis. Almost all of the CpbHLHs in the same subfamily shared similar gene structures and protein motifs according to analysis of exon/intron organizations and motif compositions. The number of exons in CpbHLHs varied from one to 10 with an average of five. The amino acid sequences of the bHLH domains were quite conservative, especially Leu-27 and Leu-63. Promoter cis-element analysis revealed that most of the CpbHLHs contained cis-elements that can respond to various biotic/abiotic stress-related events. Gene ontology (GO) analysis revealed that CpbHLHs mainly functions in protein dimerization activity and DNA-binding, and most CpbHLHs were predicted to localize in the nucleus. Abiotic stress treatment and quantitative real-time PCR (qRT-PCR) revealed some important candidate CpbHLHs that might be responsible for abiotic stress responses in papaya. These findings would lay a foundation for further investigate of the molecular functions of CpbHLHs.


Biology ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 136
Author(s):  
Satya Srirama Karthik Divvela ◽  
Darius Saberi ◽  
Beate Brand-Saberi

Atoh8 belongs to a large superfamily of transcriptional regulators called basic helix-loop-helix (bHLH) proteins. bHLH proteins have been identified in a wide range of organisms from yeast to humans. The members of this special group of transcription factors were found to be involved not only in embryonic development but also in disease initiation and its progression. Given their importance in several fundamental processes, the translation, subcellular location and turnover of bHLH proteins is tightly regulated. Alterations in the expression of bHLH proteins have been associated with multiple diseases also in context with Atoh8 which seems to unfold its functions as both transcriptional activator and repressor. Like many other bHLH transcription factors, so far, Atoh8 has also been observed to be involved in both embryonic development and carcinogenesis where it mainly acts as tumor suppressor. This review summarizes our current understanding of Atoh8 structure, function and regulation and its complex and partially controversial involvement in development and disease.


2015 ◽  
Vol 38 (1) ◽  
pp. 145-155 ◽  
Author(s):  
Wei Huang ◽  
Ying Huang ◽  
Meng-yao Li ◽  
Feng Wang ◽  
Zhi-sheng Xu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document