scholarly journals Detecting influenza and emerging avian influenza virus by influenza and pneumonia surveillance systems in a large city in China, 2005 to 2016

2019 ◽  
Author(s):  
Xiaorong Guo ◽  
Dong Yang ◽  
Ruchun Liu ◽  
Yaman Li ◽  
Qingqing Hu ◽  
...  

Abstract BACKGROUND: Detecting avian influenza virus has become an important public health strategy for controlling the emerging infectious disease. METHODS: The HIS (hospital information system) modified influenza surveillance system (ISS) and a newly built pneumonia surveillance system (PSS) were used to monitor the viruses in Changsha City, China. The ISS was used to monitor outpatients in two sentinel hospitals to detect mild influenza and avian influenza cases, and PSS was used to monitor inpatients in all 49 hospitals to detect severe and death influenza cases. RESULTS: From 2005 to 2016, 3,551,917 outpatients were monitored by the ISS system, among whom 126,076 were influenza-like illness (ILI) cases, with the ILI proportion (ILI%) of 3.55%. After the HIS was used, the reported incident cases of ILI and ILI% increased significantly. From March, 2009 to September, 2016, 5,491,560 inpatient cases were monitored by the PSS system, among which 362,743 were pneumonia cases, with a proportion of 6.61%. About 10.55% (38,260/362,743) of cases reported on pneumonia were severe or death cases. The incidence of pneumonia increased each year in the city. Of 15 avian influenza cases reported from January, 2005 to September, 2016, there were 26.7% (4/15) mild cases detected by the HIS-modified ISS system, while 60.0% (9/15) were severe or death cases detected by the PSS system. Two H5N1 severe cases were missed by the ISS system in January, 2009 when the PSS system was not available. CONCLUSIONS: The HIS was able to improve the efficiency of the ISS for monitoring ILI and emerging avian influenza virus. However, the efficiency of the system needs to be verified in a wider area for a longer time span in China.

2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Xiaorong Guo ◽  
Dong Yang ◽  
Ruchun Liu ◽  
Yaman Li ◽  
Qingqing Hu ◽  
...  

Abstract Background Detecting avian influenza virus has become an important public health strategy for controlling the emerging infectious disease. Methods The HIS (hospital information system) modified influenza surveillance system (ISS) and a newly built pneumonia surveillance system (PSS) were used to monitor the influenza viruses in Changsha City, China. The ISS was used to monitor outpatients in two sentinel hospitals and to detect mild influenza and avian influenza cases, and PSS was used to monitor inpatients in 49 hospitals and to detect severe and death influenza cases. Results From 2005 to 2016, there were 3,551,917 outpatients monitored by the ISS system, among whom 126,076 were influenza-like illness (ILI) cases, with the ILI proportion (ILI%) of 3.55%. After the HIS was used, the reported incident cases of ILI and ILI% were increased significantly. From March, 2009 to September, 2016, there were 5,491,560 inpatient cases monitored by the PSS system, among which 362,743 were pneumonia cases, with a proportion of 6.61%. Among pneumonia cases, about 10.55% (38,260/362,743) of cases were severe or death cases. The pneumonia incidence increased each year in the city. Among 15 avian influenza cases reported from January, 2005 to September, 2016, there were 26.7% (4/15) mild cases detected by the HIS-modified ISS system, while 60.0% (9/15) were severe or death cases detected by the PSS system. Two H5N1 severe cases were missed by the ISS system in January, 2009 when the PSS system was not available. Conclusions The HIS was able to improve the efficiency of the ISS for monitoring ILI and emerging avian influenza virus. However, the efficiency of the system needs to be verified in a wider area for a longer time span in China.


2019 ◽  
Author(s):  
Xiaorong Guo ◽  
Dong Yang ◽  
Ruchun Liu ◽  
Yaman Li ◽  
Qingqing Hu ◽  
...  

Abstract BACKGROUND: Detecting avian influenza virus has become an important public health strategy for controlling the emerging infectious disease. METHODS: The HIS (hospital information system) modified influenza surveillance system (ISS) and a newly built pneumonia surveillance system (PSS) were used to monitor the influenza viruses in Changsha City, China. The ISS was used to monitor outpatients in two sentinel hospitals and to detect mild influenza and avian influenza cases, and PSS was used to monitor inpatients in 49 hospitals and to detect severe and death influenza cases. RESULTS: From 2005 to 2016, there were 3,551,917 outpatients monitored by the ISS system, among whom 126,076 were influenza-like illness (ILI) cases, with the ILI proportion (ILI%) of 3.55%. After the HIS was used, the reported incident cases of ILI and ILI% were increased significantly. From March, 2009 to September, 2016, there were 5,491,560 inpatient cases monitored by the PSS system, among which 362,743 were pneumonia cases, with a proportion of 6.61%. Among pneumonia cases, about 10.55% (38,260/362,743) of cases were severe or death cases. The pneumonia incidence increased each year in the city. Among 15 avian influenza cases reported from January, 2005 to September, 2016, there were 26.7% (4/15) mild cases detected by the HIS-modified ISS system, while 60.0% (9/15) were severe or death cases detected by the PSS system. Two H5N1 severe cases were missed by the ISS system in January, 2009 when the PSS system was not available. CONCLUSIONS: The HIS was able to improve the efficiency of the ISS for monitoring ILI and emerging avian influenza virus. However, the efficiency of the system needs to be verified in a wider area for a longer time span in China.


2019 ◽  
Author(s):  
Xiaorong Guo ◽  
Dong Yang ◽  
Ruchun Liu ◽  
Yaman Li ◽  
Qingqing Hu ◽  
...  

Abstract BACKGROUND: Detecting avian influenza virus has become an important public health strategy for controlling the emerging infectious disease. METHODS: The HIS (hospital information system) modified influenza surveillance system (ISS) and a newly built pneumonia surveillance system (PSS) were used to monitor the influenza viruses in Changsha City, China. The ISS was used to monitor outpatients in two sentinel hospitals and to detect mild influenza and avian influenza cases, and PSS was used to monitor inpatients in 49 hospitals and to detect severe and death influenza cases. RESULTS: From 2005 to 2016, there were 3,551,917 outpatients monitored by the ISS system, among whom 126,076 were influenza-like illness (ILI) cases, with the ILI proportion (ILI%) of 3.55%. After the HIS was used, the reported incident cases of ILI and ILI% were increased significantly. From March, 2009 to September, 2016, there were 5,491,560 inpatient cases monitored by the PSS system, among which 362,743 were pneumonia cases, with a proportion of 6.61%. Among pneumonia cases, about 10.55% (38,260/362,743) of cases were severe or death cases. The pneumonia incidence increased each year in the city. Among 15 avian influenza cases reported from January, 2005 to September, 2016, there were 26.7% (4/15) mild cases detected by the HIS-modified ISS system, while 60.0% (9/15) were severe or death cases detected by the PSS system. Two H5N1 severe cases were missed by the ISS system in January, 2009 when the PSS system was not available. CONCLUSIONS: The HIS was able to improve the efficiency of the ISS for monitoring ILI and emerging avian influenza virus. However, the efficiency of the system needs to be verified in a wider area for a longer time span in China.


2019 ◽  
Author(s):  
Xiaorong Guo ◽  
Dong Yang ◽  
Ruchun Liu ◽  
Yaman Li ◽  
Qingqing Hu ◽  
...  

Abstract Background: Detecting avian influenza virus has become an important public health strategy for controlling the emerging infectious disease. This study aimed to analyze the efficiency of two surveillance systems in detecting the emerging avian influenza viruses. Methods: A modified influenza surveillance system (ISS) and a new built pneumonia surveillance system (PSS) have been used to monitor the viruses in Changsha City, China. The ISS is based on monitoring outpatients in two sentinel hospitals to detect mild influenza and avian influenza cases, and PSS is based on monitoring inpatients in all 49 hospitals to detect severe and death influenza cases. Results: During the study period, 3551917 outpatients were monitored by the ISS system, among which 126076 were influenza-like illness (ILI) cases, with the ILI% of 3.55%. Totally, 14913 throat swabs were collected by the ISS system, among which 2016 were tested positive of influenza or avian influenza virus. Among the positive results, 621 were H3N2, 135 were seasonal H1N1, 610 were influenza A/H1N1 (pandemic in 2009), 106 were untyped influenza A, 540 were B, 1 was H5N6, 1 was H7N9, and 2 were H9N2 virus. 5491560 inpatient people were monitored by the PSS system, among which 6.61% (362743/5491560) were pneumonia cases. 10.55% (38260/362743) of reported pneumonia was severe or death cases. 3401 throat swab or lower respiratory tract samples were collected, among which 2094 were tested positive of influenza or avian influenza virus. Among the positive results, 78 were H3N2, 17 were seasonal H1N1, 1871 were influenza A/H1N1, 103 were untyped influenza A, 16 were B, 1 was H5N6, and 8 were H7N9 virus. Of 15 avian influenza cases reported from January, 2005 to September, 2016, 26.7% (4/15) were mild cases detected by the ISS system, while 60.0% (9/15) were severe or death cases detected by the PSS system. Two H5N1 severe cases were missed by the ISS system in January, 2009 when the PSS system was not available. Conclusion: The two systems seem to be of high efficiency in detecting the emerging avian influenza viruses but need to be verified in other cities or countries.


Author(s):  
Folajimi. O. Shorunke ◽  
Aisha Usman ◽  
Tade Adeniyi Olanrewaju ◽  
Ndadilnasiya Endie Waziri ◽  
S. N. Grace

Background: In 2019, two Highly pathogenic avian influenza (HPAI) A(H5N8) outbreaks in poultry establishments in Bulgaria, two of wild birds in Denmark and one low pathogenic avian influenza (LPAI) A(H5N3) in captive birds in the Netherlands were reported. Nigeria recorded the first outbreak of Highly Pathogenic Avian Influenza (HPAI) in February 2006 in a commercial poultry farm. Nigerian Pandemic Preparedness and Action Plan for Avian Influenza were then used to respond. Although influenza sentinel surveillance has been established in several African countries including Nigeria, data about the performance of established surveillance systems are limited on the continent. We described the avian influenza (AI) surveillance system in Ogun State, accessed veterinary health workers and farmers knowledge, evaluated all its attributes and made recommendations to improve the AI surveillance system. Methods: We adopted 2001 CDC Updated Guidelines for Evaluating Public Health Surveillance Systems. We reviewed and analyzed passive surveillance data from Ogun State Ministry of Agric, key informant interviews were conducted for relevant stakeholders at the state level and Local Government divisional veterinary clinics and farms to obtain additional information on the operations of the system.


2018 ◽  
Vol 10 (1) ◽  
Author(s):  
Phunlerd Piyaraj ◽  
Nira Pet-hoi ◽  
Chaiyos Kunanusont ◽  
Supanee Sangiamsak ◽  
Somsak Wankijcharoen ◽  
...  

Objective: We describe the Bangkok Dusit Medical Services Surveillance System (BDMS-SS) and use of surveillance efforts for influenza as an example of surveillance capability in near real-time among a network of 20 hospitals in the Bangkok Dusit Medical Services group (BDMS).Introduction: Influenza is one of the significant causes of morbidity and mortality globally. Previous studies have demonstrated the benefit of laboratory surveillance and its capability to accurately detect influenza outbreaks earlier than syndromic surveillance.1-3 Current laboratory surveillance has an approximately 4-week lag due to laboratory test turn-around time, data collection and data analysis. As part of strengthening influenza virus surveillance in response to the 2009 influenza A (H1N1) pandemic, the real-time laboratory-based influenza surveillance system, the Bangkok Dusit Medical Services Surveillance System (BDMS-SS), was developed in 2010 by the Bangkok Health Research Center (BHRC). The primary objective of the BDMS-SS is to alert relevant stakeholders on the incidence trends of the influenza virus. Type-specific results along with patient demographic and geographic information were available to physicians and uploaded for public health awareness within 24 hours after patient nasopharyngeal swab was collected. This system advances early warning and supports better decision making during infectious disease events.2 The BDMS-SS operates all year round collecting results of all routinely tested respiratory clinical samples from participating hospitals from the largest group of private hospitals in Thailand.Methods: The BDMS has a comprehensive network of laboratory, epidemiologic, and early warning surveillance systems which represents the largest body of information from private hospitals across Thailand. Hospitals and clinical laboratories have deployed automatic reporting mechanisms since 2010 and have effectively improved timeliness of laboratory data reporting. In April 2017, the capacity of near real-time influenza surveillance in BDMS was found to have a demonstrated and sustainable capability.Results: From October 2010 to April 2017, a total of 482,789 subjects were tested and 86,110 (17.8%) cases of influenza were identified. Of those who tested positive for influenza they were aged <2 years old (4.6%), 2-4 year old (10.9%), 5-14 years old (29.8%), 15-49 years old (41.9%), 50-64 years old (8.3%) and >65 years old (3.7%). Approximately 50% of subjects were male and female. Of these, 40,552 (47.0%) were influenza type B, 31,412 (36.4%) were influenza A unspecified subtype, 6,181 (7.2%) were influenza A H1N1, 4,001 (4.6%) were influenza A H3N2, 3,835 (4.4%) were influenza A seasonal and 196 (0.4%) were respiratory syncytial virus (RSV).The number of influenza-positive specimens reported by the real-time influenza surveillance system were from week 40, 2015 to week 39, 2016. A total of 117,867 subjects were tested and 17,572 (14.91%) cases tested positive for the influenza virus (Figure 1). Based on the long-term monitoring of collected information, this system can delineate the epidemiologic pattern of circulating viruses in near real-time manner, which clearly shows annual peaks in winter dominated by influenza subtype B in 2015-1016 season. This surveillance system helps to provide near real-time reporting, enabling rapid implementation of control measures for influenza outbreaks.Conclusions: This surveillance system was the first real-time, daily reporting surveillance system to report on the largest data base of private hospitals in Thailand and provides timely reports and feedback to all stakeholders. It provides an important supplement to the routine influenza surveillance system in Thailand. This illustrates a high level of awareness and willingness among the BDMS hospital network to report emerging infectious diseases, and highlights the robust and sensitive nature of BDMS’s surveillance system. This system demonstrates the flexibility of the surveillance systems in BDMS to evaluate to emerging infectious disease and major communicable diseases. Through participation in the Thailand influenza surveillance network, BDMS can more actively collaborate with national counterparts and use its expertise to strengthen global and regional surveillance capacity in Southeast Asia, in order to secure advances for a world safe and secure from infectious disease. Furthermore, this system can be quickly adapted and used to monitor future influenzas pandemics and other major outbreaks of respiratory infectious disease, including novel pathogens.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Chun-Hsien Tseng ◽  
Hsiang-Jung Tsai ◽  
Chung-Ming Chang

Introduction. The following complete molecular diagnostic procedure we developed, based on real-time quantitative PCR and traditional PCR, is effective for avian influenza surveillance, virus subtyping, and viral genome sequencing.Method. This study provides a specific and sensitive step-by-step procedure for efficient avian influenza identification of 16 hemagglutinin and 9 neuraminidase avian influenza subtypes.Result and Conclusion. This diagnostic procedure may prove exceedingly useful for virological and ecological advancements in global avian influenza research.


Sign in / Sign up

Export Citation Format

Share Document