Whole exome sequencing identified mutations causing hearing loss in five consanguineous Pakistan families
Abstract Background Hearing loss is the most common sensory defect that affects over 6% of the population worldwide. About 50%-60% of hearing loss patients are attributed to genetic causes. Currently more than 100 genes have been reported to cause non-syndromic hearing loss. It’s possible and efficient to screen all potential disease-causing genes for hereditary hearing loss by whole exome sequencing (WES). Methods We collected 5 consanguineous pedigrees with hearing loss from Pakistan and applied WES on selected patients for each pedigree, followed by bioinformatics analysis and Sanger validation to identify the causing genes for them. Results Variants in 7 genes were identified and validated in these pedigrees. We identified single candidate for 3 pedigrees, which were GIPC3 (c.937T>C), LOXHD1 (c.2935G>A) and TMPRSS3 (c.941T>C). And the remaining 2 pedigrees each contained two candidates, which were TECTA (c.4045G>A) and MYO15A (c.3310G>T and c.1705G>C) for one pedigree and DFNB59 (c.494G>A) and TRIOBP (c.1952C>T) for the other pedigree. The candidates were validated in all available samples by Sanger sequencing. Conclusion The candidate variants in hearing loss genes were validated to be co-segregated in the pedigrees, which may indicate the reasons for such patients. We also suggested that WES may be suitable strategy for hearing loss screening in clinical detection.