scholarly journals Multiplex and On-site PCR detection of swine diseases based on the microfluidic chip system

2020 ◽  
Author(s):  
Bin Zhou ◽  
Yan Jiang ◽  
Yue Wu ◽  
Shan Jiang ◽  
Kaiming Wang ◽  
...  

Abstract Background:At present, the process of inspection and quarantine starts with sampling at the customs port, continues with transporting the samples to the central laboratory for inspection experiments, and ends with the inspected results being fed back to the port. This process takes a rather long time, has the risks of degradation of biological samples [32] and generation of pathogenic microorganisms [33], and does not meet the rapid on-site detection demand [34]. Therefore, development of a technology for rapid and high- throughput detection of pathogenic microorganisms at the customs port is of great significance. This study was to develop a microfluidic chip to be applied to rapid high-throughput swine disease detection with higher accuracy and lower risk of spreading pathogenic microorganisms during transportation.Results: PCR technology has the advantages of high accurate and sensitivity in disease detection, clinical testing and food quarantine, so it plays an important role in customs inspection. However, the traditional PCR detection instrument has a large size, is time-consuming and has strict requirements on the experimental environment, which greatly limit its application in on-site testing. In this paper, the clinical samples of four swine diseases were detected by a portable and rapid microfluidic PCR system, which could achieve a on- site real-time quantitative PCR detection. Eight clinical samples were detected together on the microfluidic chip in the system, and the detection results were obtained in about an hour. The detection limit of this microfluidic PCR detection system was as low as 1 copies/μL. The results show that the high sensitivity and specificity of the microfluidic PCR detection system in disease detection will play an important role in customs inspection and quarantine during customs clearance.Conclusion: The microfluidic PCR detection system established in this study could meet the requirements for rapid detection of samples at the customs portThe new method can avoid the risky process of transporting the samples from the sampling site to the testing lab, and drastically reducing the inspection cycle, and would enable parallel inspections on one chip which greatly raising the efficiency of inspection.

2020 ◽  
Author(s):  
Yan Jiang ◽  
Shan Jiang ◽  
Yue Wu ◽  
Bin Zhou ◽  
Kaiming Wang ◽  
...  

Abstract Background: At present, the process of inspection and quarantine starts with sampling at the customs port, continues with transporting the samples to the central laboratory for inspection experiments, and ends with the inspected results being fed back to the port. This process takes a rather long time, has the risks of degradation of biological samples and generation of pathogenic microorganisms, and does not meet the rapid on-site detection demand. Therefore, development of a technology for rapid and high-throughput detection of pathogenic microorganisms at the customs port is of great significance. This study was to develop a microfluidic chip to be applied to rapid high-throughput detection for swine disease with higher accuracy and lower risk of spreading pathogenic microorganisms during transportation. Results: PCR technology has the advantages of high accurate and sensitivity in disease detection, clinical testing and food quarantine, so it plays an important role in customs inspection. However, the traditional PCR detection instrument has a large size, is time-consuming and has strict requirements on the experimental environment, which greatly limit its application in on-site testing. In this paper, the positive nucleic acid of four swine diseases were detected by a portable and rapid microfluidic PCR system, which could achieve a on-site real-time quantitative PCR detection. Eight clinical samples were detected together on the microfluidic chip in the system, and the detection results were obtained in about an hour. The detection limit of this microfluidic PCR detection system was as low as 1 copies/μL. The results show that the high sensitivity and specificity of the microfluidic PCR detection system in disease detection will play an important role in customs inspection and quarantine during customs clearance. Conclusion: The microfluidic PCR detection system established in this study could meet the requirements for rapid detection of samples at the customs port The new method can avoid the risky process of transporting the samples from the sampling site to the testing lab, and drastically reducing the inspection cycle, and would enable parallel inspections on one chip which greatly raising the efficiency of inspection.


2020 ◽  
Author(s):  
Yan Jiang ◽  
Shan Jiang ◽  
Yue Wu ◽  
Bin Zhou ◽  
Kaiming Wang ◽  
...  

Abstract Background: At present, the process of inspection and quarantine starts with sampling at the customs port, continues with transporting the samples to the central laboratory for inspection experiments, and ends with the inspected results being fed back to the port. This process had the risks of degradation of biological samples and generation of pathogenic microorganisms and did not meet the rapid on-site detection demand because it took a rather long time. Therefore, it is urgently needed to develop a rapid and high-throughput detection assay of pathogenic microorganisms at the customs port. The aim of this study was to develop a microfluidic chip to rapidly detect swine pathogenic microorganisms with high-throughput and higher accuracy. Moreover, this chip will decrease the risk of spreading infection during transportation.Results: A series of experiments were performed to establish a microfluidic chip. The resulting data showed that the positive nucleic acid of four swine viruses were detected by using a portable and rapid microfluidic PCR system, which could achieve a on-site real-time quantitative PCR detection. Furthermore, the detection results of eight clinical samples were obtained within an hour. The detection limit of this microfluidic PCR detection system was as low as 1 copies/μL. The results showed that the high sensitivity and specificity of this chip system in disease detection played an important role in customs inspection and quarantine during customs clearance.Conclusion: The microfluidic PCR detection system established in this study could meet the requirement for rapid detection of samples at the customs port. This chip could avoid the risky process of transporting the samples from the sampling site to the testing lab, and drastically reduce the inspection cycle. Moreover, it would enable parallel inspections on one chip, which greatly raised the efficiency of inspection.


2021 ◽  
Author(s):  
Yan Jiang ◽  
Shan Jiang ◽  
Yue Wu ◽  
Bin Zhou ◽  
Kaiming Wang ◽  
...  

Abstract Background: At present, the process of inspection and quarantine starts with sampling at the customs port, continues with transporting the samples to the central laboratory for inspection experiments, and ends with the inspected results being fed back to the port. This process had the risks of degradation of biological samples and generation of pathogenic microorganisms and did not meet the rapid on-site detection demand because it took a rather long time. Therefore, it is urgently needed to develop a rapid and high-throughput detection assay of pathogenic microorganisms at the customs port. The aim of this study was to develop a microfluidic chip to rapidly detect swine pathogenic microorganisms with high-throughput and higher accuracy. Moreover, this chip will decrease the risk of spreading infection during transportation.Results: A series of experiments were performed to establish a microfluidic chip. The resulting data showed that the positive nucleic acid of four swine viruses were detected by using a portable and rapid microfluidic PCR system, which could achieve a on-site real-time quantitative PCR detection. Furthermore, the detection results of eight clinical samples were obtained within an hour. The detection limit of this microfluidic PCR detection system was as low as 1 copies/μL. The results showed that the high sensitivity and specificity of this chip system in disease detection played an important role in customs inspection and quarantine during customs clearance.Conclusion: The microfluidic PCR detection system established in this study could meet the requirement for rapid detection of samples at the customs port. This chip could avoid the risky process of transporting the samples from the sampling site to the testing lab, and drastically reduce the inspection cycle. Moreover, it would enable parallel inspections on one chip, which greatly raised the efficiency of inspection.


2020 ◽  
Author(s):  
Yan Jiang ◽  
Shan Jiang ◽  
Yue Wu ◽  
Bin Zhou ◽  
Kaiming Wang ◽  
...  

Abstract Background: At present, the process of inspection and quarantine starts with sampling at the customs port, continues with transporting the samples to the central laboratory for inspection experiments, and ends with the inspected results being fed back to the port. This process had the risks of degradation of biological samples and generation of pathogenic microorganisms and did not meet the rapid on-site detection demand because it took a rather long time. Therefore, it is urgently needed to develop a rapid and high-throughput detection assay of pathogenic microorganisms at the customs port. The aim of this study was to develop a microfluidic chip to rapidly detect swine pathogenic microorganisms with high-throughput and higher accuracy. Moreover, this chip will decrease the risk of spreading infection during transportation.Results: A series of experiments were performed to establish a microfluidic chip. The resulting data showed that the positive nucleic acid of four swine viruses were detected by using a portable and rapid microfluidic PCR system, which could achieve a on-site real-time quantitative PCR detection. Furthermore, the detection results of eight clinical samples were obtained within an hour. The detection limit of this microfluidic PCR detection system was as low as 1 copies/μL. The results showed that the high sensitivity and specificity of this chip system in disease detection played an important role in customs inspection and quarantine during customs clearance.Conclusion: The microfluidic PCR detection system established in this study could meet the requirement for rapid detection of samples at the customs port. This chip could avoid the risky process of transporting the samples from the sampling site to the testing lab, and drastically reduce the inspection cycle. Moreover, it would enable parallel inspections on one chip, which greatly raised the efficiency of inspection.


2021 ◽  
Vol 17 (1) ◽  
Author(s):  
Yan Jiang ◽  
Shan Jiang ◽  
Yue Wu ◽  
Bin Zhou ◽  
Kaimin Wang ◽  
...  

Abstract Background At present, the process of inspection and quarantine starts with sampling at the customs port, continues with transporting the samples to the central laboratory for inspection experiments, and ends with the inspected results being fed back to the port. This process had the risks of degradation of biological samples and generation of pathogenic microorganisms and did not meet the rapid on-site detection demand because it took a rather long time. Therefore, it is urgently needed to develop a rapid and high-throughput detection assay of pathogenic microorganisms at the customs port. The aim of this study was to develop a microfluidic chip to rapidly detect swine pathogenic microorganisms with high-throughput and higher accuracy. Moreover, this chip will decrease the risk of spreading infection during transportation. Results A series of experiments were performed to establish a microfluidic chip. The resulting data showed that the positive nucleic acid of four swine viruses were detected by using a portable and rapid microfluidic PCR system, which could achieve a on-site real-time quantitative PCR detection. Furthermore, the detection results of eight clinical samples were obtained within an hour. The lowest concentration that amplified of this microfluidic PCR detection system was as low as 1 copies/μL. The results showed that the high specificity of this chip system in disease detection played an important role in customs inspection and quarantine during customs clearance. Conclusion The microfluidic PCR detection system established in this study could meet the requirement for rapid detection of samples at the customs port. This chip could avoid the risky process of transporting the samples from the sampling site to the testing lab, and drastically reduce the inspection cycle. Moreover, it would enable parallel inspections on one chip, which greatly raised the efficiency of inspection.


2020 ◽  
Author(s):  
Yan Jiang ◽  
Shan Jiang ◽  
Yue Wu ◽  
Bin Zhou ◽  
Kaiming Wang ◽  
...  

Abstract Background: At present, the process of inspection and quarantine starts with sampling at the customs port, continues with transporting the samples to the central laboratory for inspection experiments, and ends with the inspected results being fed back to the port. This process had the risks of degradation of biological samples and generation of pathogenic microorganisms and did not meet the rapid on-site detection demand because it took a rather long time. Therefore, it is urgently needed to develop a rapid and high-throughput detection assay of pathogenic microorganisms at the customs port. The aim of this study was to develop a microfluidic chip to rapidly detect swine pathogenic microorganisms with high-throughput and higher accuracy. Moreover, this chip will decrease the risk of spreading infection during transportation. Results: A series of experiments were performed to establish a microfluidic chip. The resulting data showed that the positive nucleic acid of four swine viruses were detected by using a portable and rapid microfluidic PCR system, which could achieve a on-site real-time quantitative PCR detection. Furthermore, the detection results of eight clinical samples were obtained within an hour. The detection limit of this microfluidic PCR detection system was as low as 1 copies/μL. The results showed that the high sensitivity and specificity of this chip system in disease detection played an important role in customs inspection and quarantine during customs clearance. Conclusion: The microfluidic PCR detection system established in this study could meet the requirement for rapid detection of samples at the customs port. This chip could avoid the risky process of transporting the samples from the sampling site to the testing lab, and drastically reduce the inspection cycle. Moreover, it would enable parallel inspections on one chip, which greatly raised the efficiency of inspection.


2001 ◽  
Vol 47 (3) ◽  
pp. 378-383 ◽  
Author(s):  
Chieko Matsumoto ◽  
Rieko Shiozawa ◽  
Shigeki Mitsunaga ◽  
Akiko Ichikawa ◽  
Rika Ishiwatari ◽  
...  

2020 ◽  
Vol 144 (11) ◽  
pp. 1335-1343
Author(s):  
Sandhya Sharma ◽  
Md Alamgir Kabir ◽  
Waseem Asghar

Context.— Zika virus (ZIKV) infection, primarily transmitted by mosquitoes, causes various neurologic disorders. To differentiate ZIKV from other arboviruses, such as dengue, chikungunya, and yellow fever viruses, a highly specific, sensitive, and automated detection system is needed for point-of-care (POC) settings. Objective.— To detect ZIKV at POC settings, we have developed a fully automated lab-on-a-chip microfluidic platform for rapid disease detection by using reverse transcription loop–mediated isothermal amplification. Design.— The developed setup consists of a microfluidic chip, a platform for magnetic actuation, and a heater along with the sensor to precisely control the temperature for the target amplification. The platform accurately controls the movement of the magnetic beads that enable the isolation and purification of the target nucleotides adhered to their surface for the amplification and disease detection on the microfluidic chip. Results.— Within 40 minutes, change in color due to the presence of ZIKV amplicons was visually observed with the spiked plasma samples in the end point analysis. Also, we have accurately and specifically identified ZIKV in a small number of de-identified clinical samples. Conclusions.— All-inclusive, the developed fully automated POC ZIKV diagnostic chip is rapid, simple, easy to use, inexpensive, and suitable for the areas where facilities are limited.


Sign in / Sign up

Export Citation Format

Share Document