scholarly journals Use of the product of driving pressure and respiratory rate for predicting failure of weaning from mechanical ventilator in medical patients

2020 ◽  
Author(s):  
Ju Gong ◽  
Bibo Zhang ◽  
Xiaowen Huang ◽  
Bin Li ◽  
Jian Huang

Abstract Background : Respiratory workload increment in the process of mechanical ventilation withdrawal is critical for the determination of weaning outcome. Pressure, tidal volume (Vt) and respiratory rate (RR ) are considered as patient’s respiratory power, albeit being affected by excessive respiratory load. We aimed to evaluate the performance of driving pressure (DP)×RR to predict the outcome of weaning. Methods : Plateau pressure (Pplat) and positive end-expiratory pressure tot (PEEPtot) were measured during mechanical ventilation, viz., (1) brief deep sedation, (2) on volume support ventilation of MV with Vt 6 ml/kg and a PEEP of 0 cm H 2 O, (3) Pplat and PEEPtot were measured by holding breath for 2s after inhalation and exhalation, respectively. The DP was determined as Pplat minus PEEPtot. The highest RR was recorded within 3 min during spontaneous-breathing trial (SBT). Patients that were able to tolerate SBT for 1 h were directly extubated. These measurements correlated well with weaning outcome. Notably, patients in the “failure” group failed the SBT, died, while others required reintubation or noninvasive ventilation within 48 h of extubation. Results : Out of the 61 patients studied, 22 failed weaning. During the withdrawal of ventilation, DP×RR was 134.2±33.2 cmH 2 O ·breaths/min and 238.5±61.7 cmH 2 O·breaths/min ( P =0.00), DP was 7.9±1.6 cmH 2 O and 9.7±2.3 cmH 2 O ( P =0.00), in the “success” and “failure” groups, respectively. The DP×RR index greater than 170 cmH 2 O·breaths/min had a sensitivity of 95.5% and a specificity of 89.7%, while DP index greater than 8.1 cmH 2 O had 81.8% sensitivity and 64.1% specificity to predict weaning failure. Conclusions : Measurement of DP×RR during withdrawal of ventilation may help predict weaning outcome. Noticeably, high DP×RR increased the likelihood of weaning failure.

2020 ◽  
Author(s):  
Ju Gong ◽  
Bibo Zhang ◽  
Xiaowen Huang ◽  
Bin Li ◽  
Jian Huang

Abstract Background : Respiratory workload increment in the process of mechanical ventilation withdrawal is critical for the determination of weaning outcome. Pressure, tidal volume (Vt) and respiratory rate (RR ) are considered as patient’s respiratory power, albeit being affected by excessive respiratory load. We aimed to evaluate the performance of driving pressure (DP)×RR to predict the outcome of weaning. Methods : Plateau pressure (Pplat) and positive end-expiratory pressure tot (PEEPtot) were measured during mechanical ventilation, viz., (1) brief deep sedation, (2) on volume support ventilation of MV with Vt 6 ml/kg and a PEEP of 0 cm H 2 O, (3) Pplat and PEEPtot were measured by holding breath for 2s after inhalation and exhalation, respectively. The DP was determined as Pplat minus PEEPtot. The highest RR was recorded within 3 min during spontaneous-breathing trial (SBT). Patients that were able to tolerate SBT for 1 h were directly extubated . Results : Out of the 61 patients studied, 22 failed weaning. During the withdrawal of ventilation, DP×RR was 134.2±33.2 cmH 2 O ·breaths/min and 238.5±61.7 cmH 2 O·breaths/min ( P =0.00), DP was 7.9±1.6 cmH 2 O and 9.7±2.3 cmH 2 O ( P =0.00), in the “success” and “failure” groups, respectively. The DP×RR index greater than 170 cmH 2 O·breaths/min had a sensitivity of 95.5% and a specificity of 89.7%, while DP index greater than 8.1 cmH 2 O had 81.8% sensitivity and 64.1% specificity to predict weaning failure. Conclusions : Measurement of DP×RR during withdrawal of ventilation may help predict weaning outcome. Noticeably, high DP×RR increased the likelihood of weaning failure.


2020 ◽  
Author(s):  
Ju Gong ◽  
Bibo Zhang ◽  
Xiaowen Huang ◽  
Bin Li ◽  
Jian Huang

Abstract Background: Respiratory workload increment in the process of mechanical ventilation withdrawal is critical for the determination of weaning outcome. Pressure, tidal volume (Vt) and respiratory rate (RR) are considered as patient’s respiratory power, albeit being affected by excessive respiratory load. We aimed to evaluate the performance of driving pressure (DP)×RR to predict the outcome of weaning.Methods: Plateau pressure (Pplat) and positive end-expiratory pressure tot (PEEPtot) were measured during mechanical ventilation, viz., (1) brief deep sedation, (2) on volume support ventilation of MV with Vt 6 ml/kg and a PEEP of 0 cm H2O, (3) Pplat and PEEPtot were measured by holding breath for 2s after inhalation and exhalation, respectively. The DP was determined as Pplat minus PEEPtot. The highest RR was recorded within 3 min during spontaneous-breathing trial (SBT). Patients that were able to tolerate SBT for 1 h were extubated.Results: Out of the 61 patients studied, 22 failed weaning. During the withdrawal of ventilation, DP×RR was 134.2±33.2 cmH2O·breaths/min and 238.5±61.7 cmH2O·breaths/min (P=0.00), DP was 7.9±1.6 cmH2O and 9.7±2.3 cmH2O (P=0.00), in the “success” and “failure” groups, respectively. The DP×RR index greater than 170 cmH2O·breaths/min had a sensitivity of 95.5% and a specificity of 89.7%, while DP index greater than 8.1 cmH2O had 81.8% sensitivity and 64.1% specificity to predict weaning failure.Conclusions: Measurement of DP×RR during withdrawal of ventilation may help predict weaning outcome. Noticeably, high DP×RR increased the likelihood of weaning failure.


2021 ◽  
Vol 49 (5) ◽  
pp. 030006052110100
Author(s):  
Ju Gong ◽  
Bibo Zhang ◽  
Xiaowen Huang ◽  
Bin Li ◽  
Jian Huang

Objective Clinicians cannot precisely determine the time for withdrawal of ventilation. We aimed to evaluate the performance of driving pressure (DP)×respiratory rate (RR) to predict the outcome of weaning. Methods Plateau pressure (Pplat) and total positive end-expiratory pressure (PEEPtot) were measured during mechanical ventilation with brief deep sedation and on volume-controlled mechanical ventilation with a tidal volume of 6 mL/kg and a PEEP of 0 cmH2O. Pplat and PEEPtot were measured by patients holding their breath for 2 s after inhalation and exhalation, respectively. DP was determined as Pplat minus PEEPtot. The rapid shallow breathing index was measured from the ventilator. The highest RR was recorded within 3 minutes during a spontaneous breathing trial. Patients who tolerated a spontaneous breathing trial for 1 hour were extubated. Results Among the 105 patients studied, 44 failed weaning. During ventilation withdrawal, DP×RR was 136.7±35.2 cmH2O breaths/minute in the success group and 230.2±52.2 cmH2O breaths/minute in the failure group. A DP×RR index >170.8 cmH2O breaths/minute had a sensitivity of 93.2% and specificity of 88.5% to predict failure of weaning. Conclusions Measurement of DP×RR during withdrawal of ventilation may help predict the weaning outcome. A high DP×RR increases the likelihood of weaning failure. Statement: This manuscript was previously posted as a preprint on Research Square with the following link: https://www.researchsquare.com/article/rs-15065/v3 and DOI: 10.21203/rs.2.24506/v3


BMJ Open ◽  
2018 ◽  
Vol 8 (9) ◽  
pp. e021189 ◽  
Author(s):  
Zhicheng Qian ◽  
Ming Yang ◽  
Lin Li ◽  
Yaolong Chen

ObjectiveThe aim of this systematic review was to assess the diaphragmatic dysfunction (DD) as a predictor of weaning outcome.BackgroundSuccessful weaning depends on several factors: muscle strength, cardiac, respiratory and metabolic. Acquired weakness in mechanical ventilation is a growing important cause of weaning failure. With the development of ultrasonography, DD can be evaluated with ultrasound in weakness patients to predict weaning outcomes.MethodsThe Cochrane Library, PubMed, Embase, Ovid Medline, WanFang Data and CNKI were systematically searched from the inception to September 2017. Ultrasound assessment of DD in adult mechanical ventilation patients was included. Two independent investigators assessed study quality in accordance with the Quality Assessment of Diagnostic Accuracy Studies-2 tool. The primary outcome was diaphragmatic thickness and excursion in the weaning success and failure group. The secondary outcome was the influence of DD on weaning outcome.ResultsEleven studies involving a total of 436 patients were included. There were eight studies comparing diaphragmatic excursion (DE), five comparing the diaphragmatic thickening fraction (DTF) and two comparing DD between groups with and without successful weaning. Overall, the DE or DTF had a pooled sensitivity of 0.85 (95% CI 0.77 to 0.91) and a pooled specificity of 0.74 (95% CI 0.66 to 0.80) for predicting weaning success. There was high heterogeneity among the included studies (I2=80%; p=0.0006). The rate of weaning failure was significantly increased in patients with DD (OR 8.82; 95% CI 3.51 to 22.13; p<0.00001).ConclusionsBoth DE and DTF showed good diagnostic performance to predict weaning outcomes in spite of limitations included high heterogeneity among the studies. DD was found to be a predictor of weaning failure in critically ill patients.


2017 ◽  
Vol 126 (6) ◽  
pp. 1107-1115 ◽  
Author(s):  
Martin Dres ◽  
Damien Roux ◽  
Tài Pham ◽  
Alexandra Beurton ◽  
Jean-Damien Ricard ◽  
...  

Abstract Background Pleural effusion is frequent in intensive care unit patients, but its impact on the outcome of weaning remains unknown. Methods In a prospective study performed in three intensive care units, pleural ultrasound was performed at the first spontaneous breathing trial to detect and quantify pleural effusion (small, moderate, and large). Weaning failure was defined by a failed spontaneous breathing trial and/or extubation requiring any form of ventilatory support within 48 h. The primary endpoint was the prevalence of pleural effusion according to weaning outcome. Results Pleural effusion was detected in 51 of 136 (37%) patients and was quantified as moderate to large in 18 (13%) patients. As compared to patients with no or small pleural effusion, their counterparts were more likely to have chronic renal failure (39 vs. 7%; P = 0.01), shock as the primary reason for admission (44 vs. 19%; P = 0.02), and a greater weight gain (+4 [0 to 7] kg vs. 0 [−1 to 5] kg; P = 0.02). The prevalence of pleural effusion was similar in weaning success and weaning failure patients (odds ratio, 1.23; 95% CI, 0.61 to 2.49; P = 0.56), as was the prevalence of moderate to large pleural effusion (odds ratio, 0.89; 95% CI, 0.33 to 2.41; P = 1.00). Duration of mechanical ventilation and intensive care unit length of stay were similar between patients with no or small pleural effusion and those with moderate to large pleural effusion. Conclusions Significant pleural effusion was observed in 13% of patients at the time of liberation from mechanical ventilation and was not associated with an alteration of weaning outcome. (Anesthesiology 2017; 126:1107–15)


2021 ◽  
Vol 22 (1) ◽  
pp. 147032032199949
Author(s):  
Jian Liu ◽  
Chuan-jiang Wang ◽  
Jun-huai Ran ◽  
Shi-hui Lin ◽  
Dan Deng ◽  
...  

Objective: Mechanical ventilation is an important treatment for critically ill patients. Physicians generally perform a spontaneous breathing trial (SBT) to determine whether the patients can be weaned from mechanical ventilation, but almost 17% of the patients who pass the SBT still require respiratory support. Cardiac dysfunction is an important cause of weaning failure. The use of brain natriuretic peptide or N-terminal pro-BNP is a simple method to assess cardiac function. We performed a systematic review of investigations of brain natriuretic peptide or N-terminal pro-BNP as predictors of weaning from mechanical ventilation. Data sources: PubMed (1950 to December 2020), Cochrane, and Embase (1974 to December 2020), and some Chinese databases for additional articles (China Biology Medicine (CBM), China Science and Technology Journal Database (CSTJ), and Wanfang Data and China National Knowledge Infrastructure (CNKI)). Study selection: We systematically searched observation studies investigating the predictive value of brain natriuretic peptide or N-terminal pro-brain natriuretic peptide in weaning outcome of patients with mechanical ventilation. Data extraction: Two independent reviewers extracted data. The differences are resolved through consultation. Data synthesis: We included 18 articles with 1416 patients and extracted six index tests with pooled sensitivity and specificity for each index test. For the BNP change rate predicting weaning success, the pooled sensitivity was 89% (83%–94%) and the pooled specificity was 82% (72%–89%) with the highest pooled AUC of 0.9511. Conclusions: The brain natriuretic peptide change rate is a reliable predictor of weaning outcome from mechanical ventilation.


2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Yang Xue ◽  
Zhen Zhang ◽  
Chu-Qiao Sheng ◽  
Yu-Mei Li ◽  
Fei-Yong Jia

Abstract Introduction Multiple studies have shown that diaphragmatic ultrasound can better predict the outcome of weaning in adults. However, there are few studies focusing on children, leading to a lack of sufficient clinical evidence for the application of diaphragmatic ultrasound in children. The purpose of this study was to investigate the predictive value of diaphragm ultrasound for weaning outcomes in critically ill children. Methods The study included 50 cases whose mechanical ventilation (MV) time was > 48 h, and all eligibles were divided into either the weaning success group (n = 39) or the weaning failure group (n = 11). Diaphragm thickness, diaphragmatic excursion (DE), and diaphragmatic thickening fraction (DTF) were measured in the zone of apposition. The maximum inspiratory pressure (PImax) was also recorded. Results The ventilatory treatment time (P = 0.002) and length of PICU stay (P = 0.013) in the weaning failure group was longer than the success group. Cut-off values of diaphragmatic measures associated with successful weaning were ≥ 21% for DTF with a sensitivity of 0.82 and a specificity of 0.81, whereas it was ≥0.86 cm H2O/kg for PImax with a sensitivity of 0.51 and a specificity of 0.82. The linear correlation analysis showed that DTF had a significant positive correlation with PImax in children (P = 0.003). Conclusions Diaphragm ultrasound has potential value in predicting the weaning outcome of critically ill children. DTF and PImax presented better performance than other diaphragmatic parameters. However, DE has limited value in predicting weaning outcomes of children with MV. Trial registration Current Controlled Trials ChiCTR1800020196, (Dec 2018).


QJM ◽  
2020 ◽  
Vol 113 (Supplement_1) ◽  
Author(s):  
H M A Fawzy ◽  
M H M Hassan ◽  
A A M Alkholy

Abstract Background Ventilator induced diaphragmatic dysfunction (VIDD), as a loss of diaphragmatic force generating capacity due to the use of mechanical ventilation. Difficulties in discontinuing ventilatory support are encountered in 20–25% of mechanically ventilated patients, with a staggering 40% of time spent in the intensive care unit being devoted to weaning. M-mode ultrasonography is now an accepted qualitative method of assessing diaphragmatic motion in normal and pathological conditions. In this study, we evaluated whether diaphragmatic excursion (DE) as measured by M-mode sonography can be a predictor of weaning and diagnosis of VIDD. Aim The aim of this study is to determine the presence of ventilator induced diaphragmatic dysfunction (VIDD) diagnosed by M-mode ultrasonography and its impact on weaning outcome. Methodology This study was conducted prospectively in critical care unit in Ain Shams Hospital, a university-affiliated, tertiary referral center in Cairo, Egypt. Study subjects included 78 patients between August 2017 to August 2018. who required mechanical ventilation ≥72hrs. who fulfilled the spontaneous breath trial (SBT) criteria, at the start of a 1-hr SBT, each hemidiaphragm was evaluated M-mode sonography with the patient in the supine position. Rapid shallow Breathing index (RSBI) was simultaneously calculated at the bedside. Ultrasonographic Diaphragmatic Dysfunction (DD) was diagnosed if an Diaphragmatic Excursion (DE) was &lt;10 mm or negative, the latter indicating paradoxical diaphragmatic movement. Results Diaphragmatic Dysfunction (DD) among the eligible 78 patients was 48% (n = 37). DD group had longer weaning time [39,2 (26-56) hrs. vs. 22.3 (30-16) hrs. p = 0.001) in DD vs. NDD group respectively and total ventilation time [140 (130-150) hrs. vs. 130 (120–140) hrs. p &gt; 0.05) in DD vs. NDD group respectively. Weaning failure was (45.8% vs. 30.8%, p=0.01) in DD vs. NDD group respectively. In NDD group Rt. DE, mean 25.4 ±4.1 mm. While Lt. side was 25.3±4.6 mm, 11.25mm and 22mm (45-15) respectively. In DD group Rt. DE, mean 7.6 ±2.02mm, IQR 2.4 mm and median 8.2mm (10-1.9). While Lt. side was 9.2±0.8mm, 4.3mm and 8.9mm (9.8-5.7) respectively. The area under the receiver operating characteristics curve (ROC) of ultrasonographic criteria in predicting weaning failure was near similar to that of rapid shallow breathing index. Hypercapenic acidosis in NDD group might protect them from VIDD Conclusions DD is present in a significant percentage 48% (nearly half) of our medical ICU patients on MV ≥ 72 hrs which largely account for weaning failure. DD was associated with a significant longer weaning time, and ICU stay, with no significant difference in 30 day mortality Recommendations DE by US measurements is a valuable tool and is recommended as an adjunctive weaning index to aid prediction of weaning outcome. Evaluating the role of spontaneous ventilation modes and advanced ventilation modes as PAV and NAVA effects on decreas ing VIDD versus controlled modes.


Sign in / Sign up

Export Citation Format

Share Document