scholarly journals The Effects of Transcranial Direct Current Stimulation on Performance and Recovery Sleep during Acute sleep Deprivation

2020 ◽  
Author(s):  
Jin-xiang Cheng ◽  
Xianchao Zhao ◽  
Jian Qiu ◽  
Yingcong Jiang ◽  
Jiafeng Ren ◽  
...  

Abstract Background: Previous studies have claimed that transcranial direct current stimulation (tDCS) on the left dorsolateral prefrontal cortex (dlPFC) improves cognition in patients, but few studies that have evaluated the effects of tDCS on cognition improvement during sleep deprivation. To determine whether tDCS (anodal on the left DLPFC and cathodal on the right DLPFC at 2mA current for 30 minutes) can be an effective fatigue countermeasure. Methods: Seven participants and 8 participants underwent active or sham tDCS on the time participants’ cognition declined, respectively. All participants completed the psychomotor vigilance task, the trail making test A and B, the digit cancellation test, the stroop color word test, the brief visuospatial memory test-revised and a procedural game every two hours during the sleep deprivation and after recovery sleep. Results: The active tDCS had beneficial effects on attention, memory, executive function, processing speed, and the ability to inhibit cognitive interference, as well as improvements of subjective drowsiness and fatigue during sleep deprivation. The lasting effect of single tDCS on cognition during sleep deprivation can extend to more than 2 hours. All participants after tDCS gained no disturbed recovery sleep and recovered to baseline cognitive level after the recovery sleep. Conclusions: The study indicated that tDCS is an effective fatigue countermeasure during sleep deprivation, and doesn’t disturb the recovery sleep and performance postrecovery sleep.

SLEEP ◽  
2021 ◽  
Vol 44 (Supplement_2) ◽  
pp. A19-A19
Author(s):  
John Hughes ◽  
Tracy Jill Doty ◽  
Ruthie Ratcliffe ◽  
Thomas Balkin

Abstract Introduction The EEG slow oscillation of < 1 Hertz frequency has been implicated in various sleep functions, sparking a recent interest in slow oscillation enhancement strategies. In a seminal study, Marshall et al. (2006) demonstrated that 25 minutes of a slow oscillatory form of transcranial direct current stimulation (SO-tDCS) during early nocturnal sleep improved subsequent retention of word pairs learned prior to sleep, consistent with a proposed role for the slow oscillation in sleep-related memory consolidation. Another proposed function of the slow oscillation is synaptic downscaling, hypothesized to constitute the physiological basis for satisfying the homeostatic drive for sleep, per the synaptic homeostasis hypothesis of Tononi and Cirelli. We sought to determine if SO-tDCS could enhance the restorative properties of sleep, by enhancing slow oscillation activity, during a restricted sleep opportunity by assessing performance during a subsequent period of sleep deprivation (SD). Methods Twenty-six healthy volunteers were randomized into two groups. Participants either received electrical stimulation with 50 minutes of SO-tDCS at 0.75Hz, or sham stimulation, during the second hour of a restricted two hour sleep opportunity (11:00PM TO 1:00AM), followed by a 46 hour period of SD and then two recovery nights of sleep. Vigilance was assessed periodically with the Psychomotor Vigilance Test (PVT) during a baseline day, SD, and during the two days following recovery sleep nights. Results A mixed linear regression revealed significant main effects of day, group, and the interaction between group and day on mean reaction time (RT). Posthoc analysis revealed faster RTs following stimulation on day 2 of SD. It was also found that participants in the stimulation group had fewer major lapses (RTs > 500 ms) than those in the sham group over the first three days following stimulation. Conclusion Slow oscillatory transcranial direct current stimulation during a portion of a restricted period of sleep appears to enhance sleep’s restorative properties and improves cognitive performance during subsequent sustained wakefulness. The mechanistic basis for this phenomenon may be increased slow oscillation induced synaptic renormalization. Support (if any) Department of Defense Military Operational Medicine Research Program (MOMRP)


2021 ◽  
pp. 1-11
Author(s):  
Daniela Smirni ◽  
Massimiliano Oliveri ◽  
Eliana Misuraca ◽  
Angela Catania ◽  
Laura Vernuccio ◽  
...  

Background: Recent studies showed that in healthy controls and in aphasic patients, inhibitory trains of repetitive transcranial magnetic stimulation (rTMS) over the right prefrontal cortex can improve phonemic fluency performance, while anodal transcranial direct current stimulation (tDCS) over the left prefrontal cortex can improve performance in naming and semantic fluency tasks. Objective: This study aimed at investigating the effects of cathodal tDCS over the left or the right dorsolateral prefrontal cortex (DLPFC) on verbal fluency tasks (VFT) in patients with mild Alzheimer’s disease (AD). Methods: Forty mild AD patients participated in the study (mean age 73.17±5.61 years). All participants underwent cognitive baseline tasks and a VFT twice. Twenty patients randomly received cathodal tDCS to the left or the right DLPFC, and twenty patients were assigned to a control group in which only the two measures of VFT were taken, without the administration of the tDCS. Results: A significant improvement of performance on the VFT in AD patients was present after tDCS over the right DLPFC (p = 0.001). Instead, no difference was detected between the two VFTs sessions after tDCS over the left DLPFC (p = 0.42). Furthermore, these results cannot be related to task learning effects, since no significant difference was found between the two VFT sessions in the control group (p = 0.73). Conclusion: These data suggest that tDCS over DLPFC can improve VFT performance in AD patients. A hypothesis is that tDCS enhances adaptive patterns of brain activity between functionally connected areas.


2021 ◽  
Author(s):  
Nadja Doerig ◽  
Rosa Bohlender ◽  
Marius Moisa ◽  
Erich Seifritz ◽  
Christian Ruff ◽  
...  

Abstract Reappraisal of negative memories and experiences is central for mental health and well-being. Deficiency of reappraisal lies at the core of many psychiatric disorders and is a key target for treatment. Here we apply transcranial direct current stimulation (tDCS) to enhance reappraisal of negative emotional memories. In a randomized, sham-controlled, 2x2 between-subject and double-blinded study, we applied single sessions of anodal and sham tDCS over the right dorsolateral prefrontal cortex (DLPFC) of 101 healthy participants while reappraising a personal negative memory or engaging in a control task. We hypothesized that (i) reappraisal decreases negative valence, arousal and evaluations of the memory and leads to improved decision making, and (ii) tDCS leads to additional changes in these reappraisal outcomes. In line with these hypotheses, participants’ personal memories were rated as less negative and less arousing following reappraisal. Anodal tDCS stimulation during reappraisal was associated with significant additional reductions in negative valence compared to sham stimulation. Our results indicate that tDCS may enhance some of the effects of reappraisal. If replicated, our findings suggest potential benefits elicited by tDCS stimulation that may help to optimize current treatment approaches for psychiatric disorders.


2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Min Wu ◽  
Yamei Yu ◽  
Lunjie Luo ◽  
Yuehao Wu ◽  
Jian Gao ◽  
...  

Conventional transcranial direct current stimulation (tDCS) targeting the left dorsolateral prefrontal cortex (DLPFC) could improve arousal in disorders of consciousness (DOC). However, the comparative effectiveness of anodal stimulation of the left DLPFC and the electrophysiological effect of tDCS are yet to be determined. In this randomized sham-controlled design, patients were separated into three groups (left/right anodal tDCS, sham). Data on the clinical assessments and EEG were collected at baseline and after 2 weeks of tDCS. The outcome at 3-month follow-up was evaluated using the Glasgow Outcome Scale-Extended. Results showed that sessions of the left tDCS facilitated the excitability of the prefrontal cortex, whereas only one patient had a positive outcome. Targeting the right DLPFC was less effective, merely leading to activation of the stimulation site, with no effect on the state of arousal. Moreover, sham stimulation had minimal or no effect on any of the outcomes. These results provide evidence for a hemispheric asymmetry of tDCS effects in patients with DOC. Left anodal tDCS might be more effective for modulating cortical excitability compared to tDCS on the right DLPFC. However, future studies with large sample sizes are needed to confirm these findings. This trial is registered with NCT03809936.


2015 ◽  
Vol 112 (11) ◽  
pp. 3314-3319 ◽  
Author(s):  
Vadim Axelrod ◽  
Geraint Rees ◽  
Michal Lavidor ◽  
Moshe Bar

Humans mind-wander quite intensely. Mind wandering is markedly different from other cognitive behaviors because it is spontaneous, self-generated, and inwardly directed (inner thoughts). However, can such an internal and intimate mental function also be modulated externally by means of brain stimulation? Addressing this question could also help identify the neural correlates of mind wandering in a causal manner, in contrast to the correlational methods used previously (primarily functional MRI). In our study, participants performed a monotonous task while we periodically sampled their thoughts to assess mind wandering. Concurrently, we applied transcranial direct current stimulation (tDCS). We found that stimulation of the frontal lobes [anode electrode at the left dorsolateral prefrontal cortex (DLPFC), cathode electrode at the right supraorbital area], but not of the occipital cortex or sham stimulation, increased the propensity to mind-wander. These results demonstrate for the first time, to our knowledge, that mind wandering can be enhanced externally using brain stimulation, and that the frontal lobes play a causal role in mind-wandering behavior. These results also suggest that the executive control network associated with the DLPFC might be an integral part of mind-wandering neural machinery.


2021 ◽  
Vol 11 (8) ◽  
pp. 1104
Author(s):  
Médhi Gilson ◽  
Michael A. Nitsche ◽  
Philippe Peigneux

Targeted memory reactivation (TMR) and transcranial direct current stimulation (tDCS) can enhance memory consolidation. It is currently unknown whether TMR reinforced by simultaneous tDCS has superior efficacy. In this study, we investigated the complementary effect of TMR and bilateral tDCS on the consolidation of emotionally neutral and negative declarative memories. Participants learned neutral and negative word pairs. Each word pair was presented with an emotionally compatible sound. Following learning, participants spent a 20 min retention interval awake under four possible conditions: (1) TMR alone (i.e., replay of 50% of the associated sounds), (2) TMR combined with anodal stimulation of the left DLPFC, (3) TMR combined with anodal stimulation of the right DLPFC and (4) TMR with sham tDCS. Results evidenced selective memory enhancement for the replayed stimuli in the TMR-only and TMR-sham conditions, which confirms a specific effect of TMR on memory. However, memory was enhanced at higher levels for all learned items (irrespective of TMR) in the TMR-anodal right and TMR-anodal left tDCS conditions, suggesting that the beneficial effects of tDCS overshadow the specific effects of TMR. Emotionally negative memories were not modulated by tDCS hemispheric polarity. We conclude that electrical stimulation of the DLPFC during the post-learning period globally benefits memory consolidation but does not potentiate the specific benefits of TMR.


Sign in / Sign up

Export Citation Format

Share Document