scholarly journals Generation of AGM-derived Akt-EC (AGM-EC)

2020 ◽  
Author(s):  
Tessa Dignum ◽  
Barbara Varnum-Finney ◽  
Stacey Dozono ◽  
Brandon Hadland

Abstract During murine embryonic development, the first hematopoietic stem cells (HSCs) emerge within the major arterial vasculature, including the aorta-gonad-mesonephros (AGM) region. Throughout their emergence and subsequent maturation, HSCs retain a close physical association with the surrounding endothelial cell layer, suggesting that signaling interactions between HSC and the surrounding vascular niche may play an integral role in HSC development. Indeed, we have previously shown that co-culture with AGM-derived endothelial cells (AGM EC) engineered to constitutively express Akt (AGM Akt-EC) is sufficient to mature non-engrafting HSC precursors from hemogenic endothelium to fully functional HSCs1-3. Here, we describe how to generate these AGM Akt-EC cells for use in co-culture experiments, providing detailed instructions from the isolation of AGM EC from embryonic tissues, to their infection with the PGK.myr-AKT lentivirus and subsequent characterization by flow cytometry.

Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 2000-2000
Author(s):  
Arne Trummer ◽  
Dennis Rataj ◽  
Sonja Werwitzke ◽  
Andreas Tiede

Abstract The improvement of graft function and time to engraftment might help to reduce infection-related mortality in stem cell transplantation (SCT). While the concept of stem cells fucosylation for accelerated engraftment has already reached clinical study phase (for cord blood transplantation; NCT01471067), own previous work has shown an association between engraftment time and circulating microparticles bearing P-Selectin and P-Selectin glycoprotein ligand 1 (PSGL-1). PSGL-1 contains the sialyl Lewis x (CD15s) antigen that requires fucosylation for optimal binding of P- and E-Selectin on endothelial cells. We therefore hypothesized that addition of microparticles (MP) might enhance adhesion of human stem cells (HSC) to bone marrow endothelial cells and that MP might have synergistic effects in combination with stem cell fucosylation. HSC were obtained from apheresis products of allogeneic donors, purified by Ficoll and magnetic bead separation for CD34, stained with calcein AM and perfused through an automated microfluidic flow chamber (Bioflux 200, Fluxionbio, USA) covered with a confluent layer of an immortalized human bone marrow endothelial cell line (HBMEC). Photos (and videos) were taken using a fluorescence microscope at start, 5 min and 10 min and analyzed for adherent HSC across the whole chamber (about 1.5 sqmm) using ImageJ software. Autologous MP were generated by addition of calcimycin to apheresis and isolation of MP by centrifugation. For control experiments, one part of the MP solution was passed through a 0,2µm-filter to remove MP. MP concentration (mean: 1362/µl) was assessed by detection of Annexin V binding in flow cytometry, using TrucountBeads® for quantification. Fucosylation was performed by 1h incubation of isolated CD34+ stem cells with GDP-fucose and fucosyltransferase 7 (FUT7). Successful fucosylation was controlled by CD15s staining of HSC in flow cytometry. Results of seven experiments (in duplicate) demonstrated the highest number of adherent HSC in the MPpositiv/FUT7negativ preparation (median: 32 HSC/sqmm; range: 15-78), followed by MPpositiv/FUT7positiv (30 HSC/sqmm; range: 16-38), MPnegativ/FUT7positiv (median: 25/sqmm; range: 11-27) and MPnegativ/FUT7negativ (20 HSC/sqmm; range: 0-22). Comparison of the MPpositiv/FUT7negativ and MPnegativ/FUT7negativ as well as the MPpositiv/FUT7positiv and MPpositiv/FUT7negativ preparations showed statistically significant differences in Wilcoxon rank test (p<.05) while comparison of MPpositiv/FUT7positiv vs. MPnegativ/FUT7positiv and MPnegativ/FUT7positiv vs. MPnegativ/FUT7negativ preparations did not. In summary, these results demonstrate that MP can improve HSC adhesion to bone marrow endothelial cells similar to fucosylation. The effect of fucosylation on HSC adhesion appears to be mediated by MP. However, there is not a synergistic effect between MP and fucosylation. Disclosures: No relevant conflicts of interest to declare.


Immunity ◽  
2002 ◽  
Vol 16 (5) ◽  
pp. 673-683 ◽  
Author(s):  
Marella F.T.R de Bruijn ◽  
Xiaoqian Ma ◽  
Catherine Robin ◽  
Katrin Ottersbach ◽  
Maria-Jose Sanchez ◽  
...  

2013 ◽  
Vol 40 (11) ◽  
pp. 557-563 ◽  
Author(s):  
Zhuan Li ◽  
Fan Zhou ◽  
Dongbo Chen ◽  
Wenyan He ◽  
Yanli Ni ◽  
...  

2017 ◽  
Vol 7 (1) ◽  
pp. 176
Author(s):  
Maryam Sadat Nezhadfazel ◽  
Kazem Parivar ◽  
Nasim Hayati Roodbari ◽  
Mitra Heydari Nasrabadi

Omentum mesenchymal stem cells (OMSCs) could be induced to differentiate into cell varieties under certain conditions. We studied differentiation of OMSCs induced by using placenta extract in NMRI mice. Mesenchymal stem cells (MSCs) were isolated from omentum and cultured with mice placenta extract. MSCs, were assessed after three passages by flow cytometry for CD90, CD44, CD73, CD105, CD34 markers and were recognized their ability to differentiate into bone and fat cell lines. Placenta extract dose was determined with IC50 test then OMSCs were cultured in DMEM and 20% placenta extract.The cell cycle was checked. OMSCs were assayed on 21 days after culture and differentiated cells were determined by flow cytometry and again processed for flow cytometry. CD90, CD44, CD73, CD105 markers were not expressed, only CD34 was their marker. OMSCs were morphologically observed. Differentiated cells are similar to the endothelial cells. Therefore, to identify differentiated cells, CD31 and FLK1 expression were measured. This was confirmed by its expression. G1 phase of the cell cycle shows that OMSCs compared to the control group, were in the differentiation phase. The reason for the differentiation of MSCs into endothelial cells was the sign of presence of VEGF factor in the medium too high value of as a VEGF secreting source.


Blood ◽  
1999 ◽  
Vol 94 (7) ◽  
pp. 2271-2286 ◽  
Author(s):  
M. Rosenzweig ◽  
T.J. MacVittie ◽  
D. Harper ◽  
D. Hempel ◽  
R.L. Glickman ◽  
...  

Optimization of mobilization, harvest, and transduction of hematopoietic stem cells is critical to successful stem cell gene therapy. We evaluated the utility of a novel protocol involving Flt3-ligand (Flt3-L) and granulocyte colony-stimulating factor (G-CSF) mobilization of peripheral blood stem cells and retrovirus transduction using hematopoietic growth factors to introduce a reporter gene, murine CD24 (mCD24), into hematopoietic stem cells in nonhuman primates. Rhesus macaques were treated with Flt3-L (200 μg/kg) and G-CSF (20 μg/kg) for 7 days and autologous CD34+ peripheral blood stem cells harvested by leukapheresis. CD34+ cells were transduced with an MFGS-based retrovirus vector encoding mCD24 using 4 daily transductions with centrifugations in the presence of Flt3-L (100 ng/mL), human stem cell factor (50 ng/mL), and PIXY321 (50 ng/mL) in serum-free medium. An important and novel feature of this study is that enhanced in vivo engraftment of transduced stem cells was achieved by conditioning the animals with a low-morbidity regimen of sublethal irradiation (320 to 400 cGy) on the day of transplantation. Engraftment was monitored sequentially in the bone marrow and blood using both multiparameter flow cytometry and semi-quantitative DNA polymerase chain reaction (PCR). Our data show successful and persistent engraftment of transduced primitive progenitors capable of giving rise to marked cells of multiple hematopoietic lineages, including granulocytes, monocytes, and B and T lymphocytes. At 4 to 6 weeks posttransplantation, 47% ± 32% (n = 4) of granulocytes expressed mCD24 antigen at the cell surface. Peak in vivo levels of genetically modified peripheral blood lymphocytes approached 35% ± 22% (n = 4) as assessed both by flow cytometry and PCR 6 to 10 weeks posttransplantation. In addition, naı̈ve (CD45RA+and CD62L+) CD4+ and CD8+cells were the predominant phenotype of the marked CD3+ T cells detected at early time points. A high level of marking persisted at between 10% and 15% of peripheral blood leukocytes for 4 months and at lower levels past 6 months in some animals. A cytotoxic T-lymphocyte response against mCD24 was detected in only 1 animal. This degree of persistent long-lived, high-level gene marking of multiple hematopoietic lineages, including naı̈ve T cells, using a nonablative marrow conditioning regimen represents an important step toward the ultimate goal of high-level permanent transduced gene expression in stem cells.


Sign in / Sign up

Export Citation Format

Share Document