scholarly journals Synthesis of typical sulfonamide antibiotics with [14C]- and [13C]-labelling on phenyl ring for environmental studies

Author(s):  
Xuan Wu ◽  
Yao Yao ◽  
Lianhong Wang ◽  
Dashun Zhou ◽  
Feifei Sun ◽  
...  

Abstract Background As a kind of widely used antibiotics, sulfonamide antibiotics (SAs) has become ubiquitous environmental contaminants that caused public concerns. The behavior of SAs in complex environmental system need to be elucidated, which is hampered by unavailability or high cost of isotope-labelled SAs. Results Using commercially available uniformly [l4C]- and [l3C]-labelled aniline as starting material, we synthesized [phenyl-ring-14C]- and [phenyl-ring-l3C]-labelled sulfamethoxazole (SMX), sulfamonomethoxine (SMM), and sulfadiazine (SDZ) using four-step (via condensation of labelled N-acetylsulfanilyl chloride and aminoheterocycles) or five-step (via condensation of labelled N-acetylsulfonamide and chloroheterocycles) reactions in good yields (5.0−22.5% and 28.1−54.1% for [14C]- and [13C]-labelled SAs, respectively) and high purities (> 98.0%). Conclusion The synthesis of [l4C]-labelled SAs could be completed on milligram-level, being feasible for preparation of labelled SAs with high specific radioactivity. This study provides efficient and maneuverable methods to obtain a variety of [14C]- or [13C]-labelled SAs for studies on their environmental behavior, such as fate, transformation, and bioaccumulation.

2001 ◽  
Vol 9 (3) ◽  
pp. 677-694 ◽  
Author(s):  
Oliver Langer ◽  
Frédéric Dollé ◽  
Héric Valette ◽  
Christer Halldin ◽  
Françoise Vaufrey ◽  
...  

Marine Drugs ◽  
2022 ◽  
Vol 20 (1) ◽  
pp. 49
Author(s):  
William Kem ◽  
Kristin Andrud ◽  
Galen Bruno ◽  
Hong Xing ◽  
Ferenc Soti ◽  
...  

Nereistoxin (NTX) is a marine toxin isolated from an annelid worm that lives along the coasts of Japan. Its insecticidal properties were discovered decades ago and this stimulated the development of a variety of insecticides such as Cartap that are readily transformed into NTX. One unusual feature of NTX is that it is a small cyclic molecule that contains a disulfide bond. In spite of its size, it acts as an antagonist at insect and mammalian nicotinic acetylcholine receptors (nAChRs). The functional importance of the disulfide bond was assessed by determining the effects of inserting a methylene group between the two sulfur atoms, creating dimethylaminodithiane (DMA-DT). We also assessed the effect of methylating the NTX and DMA-DT dimethylamino groups on binding to three vertebrate nAChRs. Radioligand receptor binding experiments were carried out using washed membranes from rat brain and fish (Torpedo) electric organ; [3H]-cytisine displacement was used to assess binding to the predominantly high affinity alpha4beta2 nAChRs and [125I]-alpha-bungarotoxin displacement was used to measure binding of NTX and analogs to the alpha7 and skeletal muscle type nAChRs. While the two quaternary nitrogen analogs, relative to their respective tertiary amines, displayed lower α4β2 nAChR binding affinities, both displayed much higher affinities for the Torpedo muscle nAChR and rat alpha7 brain receptors than their respective tertiary amine forms. The binding affinities of DMA-DT for the three nAChRs were lower than those of NTX and MeNTX. An AChBP mutant lacking the C loop disulfide bond that would potentially react with the NTX disulfide bond displayed an NTX affinity very similar to the parent AChBP. Inhibition of [3H]-epibatidine binding to the AChBPs was not affected by exposure to NTX or MeNTX for up to 24 hr prior to addition of the radioligand. Thus, the disulfide bond of NTX is not required to react with the vicinal disulfide in the AChBP C loop for inhibition of [3H]-epibatidine binding. However, a reversible disulfide interchange reaction of NTX with nAChRs might still occur, especially under reducing conditions. Labeled MeNTX, because it can be readily prepared with high specific radioactivity and possesses relatively high affinity for the nAChR-rich Torpedo nAChR, would be a useful probe to detect and identify any nereistoxin adducts.


Blood ◽  
1986 ◽  
Vol 67 (2) ◽  
pp. 429-435
Author(s):  
E Boven ◽  
T Lindmo ◽  
JB Mitchell ◽  
PA Jr Bunn

The radiolabeled anti-T cell antibody T101 can be used for specific tumor localization, but unlabeled T101 produces limited cytotoxicity in patients. We thus studied the in vitro cytotoxic effects of T101 labeled with 125I, a radionuclide known for its short-range, high- linear-energy electrons. We showed that 125I-T101 could be readily prepared at high specific activity with high immunoreactivity. Human malignant T cell lines HUT 102, MOLT-4, and HUT 78 were found to differ in the number of T65 determinants (the antigen recognized by T101) and the sensitivity to external x-ray radiation, which were of significance for the cytotoxicity of 125I-T101 in vitro. The cytotoxic effects of 125I-T101 were also found to be dose dependent and increased with exposure time under frozen conditions. As controls, unlabeled T101 had no cytotoxic effect, while free Na 125I or the 125I-labeled irrelevant antibody 9.2.27 exerted minor cytotoxicity. In HUT 102 and MOLT-4, more than 3 logs' cell killing was achieved within four weeks. Because considerable cytotoxicity was demonstrated in vitro by 125I-T101 on T65- positive malignant cells, and because low-dose 111In-T101 can be used successfully for tumor localization, future trials using 125I-T101 at high specific radioactivity may improve therapeutic results in patients with T65-positive malignancies.


1972 ◽  
Vol 18 (2) ◽  
pp. 247-254
Author(s):  
James B. Hudson

The Polyoma virus-specific RNA (PyRNA) synthesized in a line of Polyoma-transformed hamster cells, was analyzed and compared with the viral-specific RNA synthesized "late" in productively infected mouse cells. The PyRNA from the transformed cells sedimented heterogeneously on sucrose gradients, including appreciable amounts of PyRNA in the > 40-S region. The overall sedimentation profile resembled that of "late" PyRNA synthesized in mouse cells. Competition hybridization experiments, however, revealed that the bulk of the PyRNA sequences in the transformed cells were different from "late" PyRNA sequences. The use of DNA–DNA hybridization experiments (with Polyoma DNA of high specific radioactivity) enabled an estimate to be made of the average number of viral genomes per transformed cell. No more than two, and possibly less than one, complete genomes were found. These studies support the hypothesis that this line of Polyoma transformed cells contains an incomplete genome, possibly only comprising "early" genes (hence the inability to rescue infectious virus), and that the viral RNA transcribed is covalently linked to host cell RNA moieties.


1971 ◽  
Vol 22 (3) ◽  
pp. 391 ◽  
Author(s):  
AR Till ◽  
PF May

Simultaneous measurements of sulphur content and specific radioactivity were made on soil fractions, two pasture species, and the fleece of grazing animals following the application of high specific radioactivity gypsum labelled with sulphur-35 (35S) to small randomly located sites in grazed pastures. The results show that the extractable soil sulphate was a precursor of plant sulphur and that the organic sulphur fractions in the soil were the source of replenishment of the extractable sulphate pool. Applied sulphur was shown to remain predominantly in the top 7.5 cm of the soil over a period of c. 600 days, and it was from this region that the plants drew their sulphur. The uptake of applied sulphur was initially different between plants of different species. These differences gradually decreased and finally disappeared as the applied sulphur became mixed into all soil sulphur fractions. A wide range of rates of mixing indicated that some fractions of the organic sulphur were recycling very slowly. Positive evidence of recycling of sulphur voided by the animals on the unlabelled areas of the pasture was found, and the rate of translocation of sulphur from the sites of its application to the remainder of the paddock was measured at two rates of stocking.


1991 ◽  
Vol 274 (3) ◽  
pp. 775-780 ◽  
Author(s):  
D S Finbloom

Interferon-gamma (IFN gamma) binds to high-affinity receptors on monocytes and is rapidly internalized. This study investigates the ability of the human monocyte-like cell line, U937, to regulate the cell-surface expression of the IFN gamma receptor (IFN gamma R) during endocytosis of ligand. Recombinant IFN gamma was radiolabelled to high specific radioactivity with Bolton-Hunter reagent and used to enumerate IFN gamma R on treated U937 cells. Cells which had internalized IFN gamma for up to 3 h displayed maximal levels of IFN gamma R at all time points tested after all unlabelled IFN gamma had been acid-stripped from the cell at pH 2.78. Therefore there was no evidence of down-modulation of the receptor. After trypsin treatment of the IFN gamma R, the cells were able to synthesize and insert into the cell membrane up to 1000 IFN gamma R molecules/h after a 60 min lag. Since biosynthesis played a minor role during the first 30 min of endocytosis, I examined other possibilities to explain the lack of down-modulation of the receptor. A solubilized-receptor assay revealed the presence of an intracellular pool of receptors equal to about 25% of the number of cell surface receptors. Using trypsin to differentiate between intracellular and surface receptors, I observed that 43% of those receptors that were internalized after a 30 min exposure to IFN gamma (580 molecules) could be recycled back to the plasma membrane. In addition, equal rates of receptor decay (t1/2 = 5 h) were observed in the presence of cycloheximide with or without IFN gamma. All the data taken together suggest that during the first 30 min of endocytosis both the expression of an intracellular source of receptor and recycling of internalized receptors contribute to maintain optimal receptor expression.


Sign in / Sign up

Export Citation Format

Share Document