scholarly journals A Multiscale Model of Terrain Dynamics for Real-Time Earthmoving Simulation

Author(s):  
Martin Servin ◽  
Tomas Berglund ◽  
Samuel Nystedt

Abstract A multiscale model for real-time simulation of terrain dynamics is explored. To represent the dynamics on different scales the model combines the description of soil as a continuous solid, as distinct particles and as rigid multibodies. The models are dynamically coupled to each other and to the earthmoving equipment. Agitated soil is represented by a hybrid of contacting particles and continuum solid, with the moving equipment and resting soil as geometric boundaries. Each zone of active soil is aggregated into distinct bodies, with the proper mass, momentum and frictional-cohesive properties, which constrain the equipment's multibody dynamics. The particle model parameters are pre-calibrated to the bulk mechanical parameters for a wide range of different soils. The result is a computationally efficient model for earthmoving operations that resolve the motion of the soil, using a fast iterative solver, and provide realistic forces and dynamic for the equipment, using a direct solver for high numerical precision. Numerical simulations of excavation and bulldozing operations are performed to validate model and measure the computational performance. Reference data is produced using coupled discrete element and multibody dynamics simulations at relatively high resolution. The digging resistance and soil displacements with the real-time multiscale model agree with the reference model up to 10-25%, and run more than three orders in magnitude faster.

Author(s):  
Martin Servin ◽  
Tomas Berglund ◽  
Samuel Nystedt

AbstractA multiscale model for real-time simulation of terrain dynamics is explored. To represent the dynamics on different scales the model combines the description of soil as a continuous solid, as distinct particles and as rigid multibodies. The models are dynamically coupled to each other and to the earthmoving equipment. Agitated soil is represented by a hybrid of contacting particles and continuum solid, with the moving equipment and resting soil as geometric boundaries. Each zone of active soil is aggregated into distinct bodies, with the proper mass, momentum and frictional-cohesive properties, which constrain the equipment’s multibody dynamics. The particle model parameters are pre-calibrated to the bulk mechanical parameters for a wide range of different soils. The result is a computationally efficient model for earthmoving operations that resolve the motion of the soil, using a fast iterative solver, and provide realistic forces and dynamic for the equipment, using a direct solver for high numerical precision. Numerical simulations of excavation and bulldozing operations are performed to test the model and measure the computational performance. Reference data is produced using coupled discrete element and multibody dynamics simulations at relatively high resolution. The digging resistance and soil displacements with the real-time multiscale model agree with the reference model up to 10–25%, and run more than three orders of magnitude faster.


2000 ◽  
Vol 663 ◽  
Author(s):  
J. Samper ◽  
R. Juncosa ◽  
V. Navarro ◽  
J. Delgado ◽  
L. Montenegro ◽  
...  

ABSTRACTFEBEX (Full-scale Engineered Barrier EXperiment) is a demonstration and research project dealing with the bentonite engineered barrier designed for sealing and containment of waste in a high level radioactive waste repository (HLWR). It includes two main experiments: an situ full-scale test performed at Grimsel (GTS) and a mock-up test operating since February 1997 at CIEMAT facilities in Madrid (Spain) [1,2,3]. One of the objectives of FEBEX is the development and testing of conceptual and numerical models for the thermal, hydrodynamic, and geochemical (THG) processes expected to take place in engineered clay barriers. A significant improvement in coupled THG modeling of the clay barrier has been achieved both in terms of a better understanding of THG processes and more sophisticated THG computer codes. The ability of these models to reproduce the observed THG patterns in a wide range of THG conditions enhances the confidence in their prediction capabilities. Numerical THG models of heating and hydration experiments performed on small-scale lab cells provide excellent results for temperatures, water inflow and final water content in the cells [3]. Calculated concentrations at the end of the experiments reproduce most of the patterns of measured data. In general, the fit of concentrations of dissolved species is better than that of exchanged cations. These models were later used to simulate the evolution of the large-scale experiments (in situ and mock-up). Some thermo-hydrodynamic hypotheses and bentonite parameters were slightly revised during TH calibration of the mock-up test. The results of the reference model reproduce simultaneously the observed water inflows and bentonite temperatures and relative humidities. Although the model is highly sensitive to one-at-a-time variations in model parameters, the possibility of parameter combinations leading to similar fits cannot be precluded. The TH model of the “in situ” test is based on the same bentonite TH parameters and assumptions as for the “mock-up” test. Granite parameters were slightly modified during the calibration process in order to reproduce the observed thermal and hydrodynamic evolution. The reference model captures properly relative humidities and temperatures in the bentonite [3]. It also reproduces the observed spatial distribution of water pressures and temperatures in the granite. Once calibrated the TH aspects of the model, predictions of the THG evolution of both tests were performed. Data from the dismantling of the in situ test, which is planned for the summer of 2001, will provide a unique opportunity to test and validate current THG models of the EBS.


Author(s):  
Y Chen ◽  
C Muratov ◽  
V Matveev

ABSTRACTWe consider the stationary solution for the Ca2+ concentration near a point Ca2+ source describing a single-channel Ca2+ nanodomain, in the presence of a single mobile Ca2+ buffer with one-to-one Ca2+ binding. We present computationally efficient approximants that estimate stationary single-channel Ca2+ nanodomains with great accuracy in broad regions of parameter space. The presented approximants have a functional form that combines rational and exponential functions, which is similar to that of the well-known Excess Buffer Approximation and the linear approximation, but with parameters estimated using two novel (to our knowledge) methods. One of the methods involves interpolation between the short-range Taylor series of the buffer concentration and its long-range asymptotic series in inverse powers of distance from the channel. Although this method has already been used to find Padé (rational-function) approximants to single-channel Ca2+ and buffer concentration, extending this method to interpolants combining exponential and rational functions improves accuracy in a significant fraction of the relevant parameter space. A second method is based on the variational approach, and involves a global minimization of an appropriate functional with respect to parameters of the chosen approximations. Extensive parameter sensitivity analysis is presented, comparing these two methods with previously developed approximants. Apart from increased accuracy, the strength of these approximants is that they can be extended to more realistic buffers with multiple binding sites characterized by cooperative Ca2+ binding, such as calmodulin and calretinin.STATEMENT OF SIGNIFICANCEMathematical and computational modeling plays an important role in the study of local Ca2+ signals underlying vesicle exocysosis, muscle contraction and other fundamental physiological processes. Closed-form approximations describing steady-state distribution of Ca2+ in the vicinity of an open Ca2+ channel have proved particularly useful for the qualitative modeling of local Ca2+ signals. We present simple and efficient approximants for the Ca2+ concentration in the presence of a mobile Ca2+ buffer, which achieve great accuracy over a wide range of model parameters. Such approximations provide an efficient method for estimating Ca2+ and buffer concentrations without resorting to numerical simulations, and allow to study the qualitative dependence of nanodomain Ca2+ distribution on the buffer’s Ca2+ binding properties and its diffusivity.


Author(s):  
Tanvir R. Tanim ◽  
Christopher D. Rahn ◽  
Chao-Yang Wang

Low-order, explicit models of lithium ion cells are critical for real-time battery management system (BMS) applications. This paper presents a seventh-order, electrolyte enhanced single particle model (ESPM) with electrolyte diffusion and temperature dependent parameters (ESPM-T). The impedance transfer function coefficients are explicit in terms of the model parameters, simplifying the implementation of temperature dependence. The ESPM-T model is compared with a commercially available finite volume based model and results show accurate matching of pulse responses over a wide range of temperature (T) and C-rates (I). The voltage response to 30 s pulse charge–discharge current inputs is within 5% of the commercial code for 25 °C<T<50 °C at I≤12.5C and -10 °C<T<50°C at I≤1C for a graphite/nickel cobalt manganese (NCM) lithium ion cell.


Polymers ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 376 ◽  
Author(s):  
Pavlos Stephanou ◽  
Martin Kröger

We have recently solved the tumbling-snake model for concentrated polymer solutions and entangled melts in the academic case of a monodisperse sample. Here, we extend these studies and provide the stationary solutions of the tumbling-snake model both analytically, for small shear rates, and via Brownian dynamics simulations, for a bidisperse sample over a wide range of shear rates and model parameters. We further show that the tumbling-snake model bears the necessary capacity to compare well with available linear and non-linear rheological data for bidisperse systems. This capacity is added to the already documented ability of the model to accurately predict the shear rheology of monodisperse systems.


Author(s):  
Timothée Habra ◽  
Houman Dallali ◽  
Alberto Cardellino ◽  
Lorenzo Natale ◽  
Nikolaos Tsagarakis ◽  
...  

Electronics ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 2076
Author(s):  
Jorge Mariscal-Harana ◽  
Víctor Alarcón ◽  
Fidel González ◽  
Juan José Calvente ◽  
Francisco Javier Pérez-Grau ◽  
...  

For the Remotely Piloted Aircraft Systems (RPAS) market to continue its current growth rate, cost-effective ‘Detect and Avoid’ systems that enable safe beyond visual line of sight (BVLOS) operations are critical. We propose an audio-based ‘Detect and Avoid’ system, composed of microphones and an embedded computer, which performs real-time inferences using a sound event detection (SED) deep learning model. Two state-of-the-art SED models, YAMNet and VGGish, are fine-tuned using our dataset of aircraft sounds and their performances are compared for a wide range of configurations. YAMNet, whose MobileNet architecture is designed for embedded applications, outperformed VGGish both in terms of aircraft detection and computational performance. YAMNet’s optimal configuration, with >70% true positive rate and precision, results from combining data augmentation and undersampling with the highest available inference frequency (i.e., 10 Hz). While our proposed ‘Detect and Avoid’ system already allows the detection of small aircraft from sound in real time, additional testing using multiple aircraft types is required. Finally, a larger training dataset, sensor fusion, or remote computations on cloud-based services could further improve system performance.


Author(s):  
Jorge Mariscal-Harana ◽  
Víctor Alarcón ◽  
Fidel González ◽  
Juan José Calvente ◽  
Francisco Javier Pérez-Grau ◽  
...  

For the Remotely Piloted Aircraft Systems (RPAS) market to continue its current growth rate, cost-effective "Detect and Avoid" systems that enable safe beyond visual line of sight (BVLOS) operations are critical. We propose an audio-based "Detect and Avoid" system, composed of microphones and an embedded computer, which performs real-time inferences using a sound event detection (SED) deep learning model. Two state-of-the-art SED models, YAMNet and VGGish, are fine-tuned using our dataset of aircraft sounds and their performances are compared for a wide range of configurations. YAMNet, whose MobileNet architecture is designed for embedded applications, outperformed VGGish both in terms of aircraft detection and computational performance. YAMNet's optimal configuration, with &gt; 70% true positive rate and precision, results from combining data augmentation and undersampling with the highest available inference frequency (i.e. 10 Hz). While our proposed "Detect and Avoid" system already allows the detection of small aircraft from sound in real time, additional testing using multiple aircraft types is required. Finally, a larger training dataset, sensor fusion, or remote computations on cloud-based services could further improve system performance.


Electronics ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 1838
Author(s):  
Federico Montaño ◽  
Tarek Ould-Bachir ◽  
Jean Pierre David

This paper presents a methodology for the design of field-programmable gate array (FPGA)-based real-time simulators (RTSs) for power electronic circuits (PECs). The programmability of the simulator results from the use of an efficient and scalable overlay architecture (OA). The proposed OA relies on a latency-insensitive design (LID) paradigm. LID consists of connecting small processing units that automatically synchronize and exchange data when appropriate. The use of such data-driven architecture aims to ease the design process while achieving a higher computational efficiency. The benefits of the proposed approach is evaluated by assessing the performance of the proposed solver in the simulation of a two-stage AC–AC power converter. The minimum achievable time-step and FPGA resource consumption for a wide range of power converter sizes is also evaluated. The proposed overlays are parametrizable in size, they are cost-effective, they provide sub-microsecond time-steps, and they offer a high computational performance with a reported peak performance of 300 GFLOPS.


Sign in / Sign up

Export Citation Format

Share Document