scholarly journals Spatio-Temporal Variability and Trend of Rainfall and Its Association with Pacific Ocean Sea Surface Temperature in West Harerge Zone, Eastern Ethiopia

Author(s):  
Getachew Bayable Tiruneh ◽  
Gedamu Amare ◽  
Getnet Alemu ◽  
Temesgen Gashaw

Abstract Background: Rainfall variability is a common characteristic in Ethiopia and it exceedingly affects agriculture particularly in the eastern parts of the country where rainfall is relatively scarce. Hence, understanding the spatio-temporal variability of rainfall is indispensable for planning mitigation measures during high and low rainfall seasons. This study examined the spatio-temporal variability and trends of rainfall in the West Harerge Zone, eastern Ethiopia.Method: The coefficient of variation (CV) and standardized anomaly index (SAI) was employed to analyze rainfall variability while Mann-Kendall (MK) trend test and Sen’s slop estimator were employed to examine the trend and magnitude of the rainfall changes, respectively. The association between rainfall and Pacific Ocean Sea Surface Temperature (SST) was also evaluated by the Pearson correlation coefficient (r).Results: The annual rainfall CV ranges from 12-19.36% while the seasonal rainfall CV extends from 15-28.49%, 24-35.58%, and 38-75.9% for average Kiremt (June-September), Belg (February-May), and Bega (October-January) seasons, respectively (1983-2019). On the monthly basis, the trends of rainfall decreased in all months except in July, October, and November. However, the trends of rainfall were not statistically significant (α = 0.05), unlike November. The annual rainfall trends showed a non-significant decreasing trend. On a seasonal basis, the trend of mean Kiremt and Belg seasons rainfall was decreased. But, it increased in Bega season although it was not statistically significant. Moreover, the correlation between rainfall and Pacific Ocean SST was negative for Kiremt while positive for Belg and Bega seasons. Besides, the correlation between rainfall and Pacific Ocean SST was negative at annual time scales.Conclusions: High spatial and temporal rainfall variability on monthly, seasonal, and annual time scales was observed in the study area. Seasonal rainfall has high inter-annual variability in the dry season (Bega) than other seasons. The trends in rainfall were decreased in most of the months. Besides, the trend of rainfall was increased annually and in the Bega season rather than other seasons. Generally, the occurrence of droughts in the study area was associated with ENSO events like most other parts of Ethiopia and East Africa.

2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Getachew Bayable ◽  
Gedamu Amare ◽  
Getnet Alemu ◽  
Temesgen Gashaw

Abstract Background Rainfall variability exceedingly affects agriculture in Ethiopia, particularly in the eastern region where rainfall is relatively scarce. Hence, understanding the spatiotemporal variability of rainfall is indispensable for planning mitigation measures during high and low rainfall seasons. This study examined the spatiotemporal variability and trends of rainfall in the West Harerge Zone, eastern Ethiopia. Method The coefficient of variation (CV) and standardized anomaly index (SAI) were used to analyze rainfall variability while Mann-Kendall (MK) trend test and Sen’s slop estimator were employed to examine the trend and magnitude of the rainfall changes, respectively. The association between rainfall and Pacific Ocean Sea Surface Temperature (SST) was also evaluated by Pearson correlation coefficient (r). Results The annual rainfall CV during 1983–2019 periods is between 12 and 19.36% while the seasonal rainfall CV extends from 15–28.49%, 24–35.58%, and 38–75.9% for average Kiremt (June–September), Belg (February–May), and Bega (October–January) seasons, respectively (1983–2019). On the monthly basis, the trends of rainfall decreased in all months except in July, October, and November. However, the trends were not statistically significant (α = 0.05), unlike in November. On a seasonal basis, the trends of mean Kiremt and Belg seasons rainfall decreased while it increased in Bega season although it is not statistically significant. Moreover, the annual rainfall showed a non-significant decreasing trend. The findings also revealed that the correlation between rainfall and Pacific Ocean SST was negative for Kiremt while positive for Belg and Bega seasons. Besides, annual rainfall and Pacific Ocean SST was negatively correlated. Conclusions High spatial and temporal rainfall variability was observed at the monthly, seasonal, and annual time scales. Seasonal rainfall has high inter-annual variability in the dry season (Bega) than other seasons. The trends in rainfall were decreased in most of the months. Besides, the trend of rainfall decreased in the annual, Belg and Kiremt season while increased in the Bega season. The study also indicated that the occurrence of droughts in the study area was associated with ENSO events like most other parts of Ethiopia and East Africa.


2020 ◽  
Vol 12 (13) ◽  
pp. 2150
Author(s):  
Andrea Corredor-Acosta ◽  
Náyade Cortés-Chong ◽  
Alberto Acosta ◽  
Matias Pizarro-Koch ◽  
Andrés Vargas ◽  
...  

The analysis of synoptic satellite data of total chlorophyll-a (Chl-a) and the environmental drivers that influence nutrient and light availability for phytoplankton growth allows us to understand the spatio-temporal variability of phytoplankton biomass. In the Panama Bight Tropical region (PB; 1–9°N, 79–84°W), the spatial distribution of Chl-a is mostly related to the seasonal wind patterns and the intensity of localized upwelling centers. However, the association between the Chl-a and different physical variables and nutrient availability is still not fully assessed. In this study, we evaluate the relationship between the Chl-a and multiple physical (wind, Ekman pumping, geostrophic circulation, mixed layer depth, sea level anomalies, river discharges, sea surface temperature, and photosynthetically available radiation) and chemical (nutrients) drivers in order to explain the spatio-temporal Chl-a variability in the PB. We used satellite data of Chl-a and physical variables, and a re-analysis of a biogeochemical product for nutrients (2002–2016). Our results show that at the regional scale, the Chl-a varies seasonally in response to the wind forcing and sea surface temperature. However, in the coastal areas (mainly Gulf of Panama and off central-southern Colombia), the maximum non-seasonal Chl-a values are found in association with the availability of nutrients by river discharges, localized upwelling centers and the geostrophic circulation field. From this study, we infer that the interplay among these physical-chemical drivers is crucial for supporting the phytoplankton growth and the high biodiversity of the PB region.


2004 ◽  
Author(s):  
Virginie Lafon ◽  
Ana Martins ◽  
Igor Bashmachnikov ◽  
Margarida Melo-Rodrigues ◽  
Miguel Figueiredo

Author(s):  
Diaz Juan Navia ◽  
Diaz Juan Navia ◽  
Bolaños Nancy Villegas ◽  
Bolaños Nancy Villegas ◽  
Igor Malikov ◽  
...  

Sea Surface Temperature Anomalies (SSTA), in four coastal hydrographic stations of Colombian Pacific Ocean, were analyzed. The selected hydrographic stations were: Tumaco (1°48'N-78°45'W), Gorgona island (2°58'N-78°11'W), Solano Bay (6°13'N-77°24'W) and Malpelo island (4°0'N-81°36'W). SSTA time series for 1960-2015 were calculated from monthly Sea Surface Temperature obtained from International Comprehensive Ocean Atmosphere Data Set (ICOADS). SSTA time series, Oceanic Nino Index (ONI), Pacific Decadal Oscillation index (PDO), Arctic Oscillation index (AO) and sunspots number (associated to solar activity), were compared. It was found that the SSTA absolute minimum has occurred in Tumaco (-3.93°C) in March 2009, in Gorgona (-3.71°C) in October 2007, in Solano Bay (-4.23°C) in April 2014 and Malpelo (-4.21°C) in December 2005. The SSTA absolute maximum was observed in Tumaco (3.45°C) in January 2002, in Gorgona (5.01°C) in July 1978, in Solano Bay (5.27°C) in March 1998 and Malpelo (3.64°C) in July 2015. A high correlation between SST and ONI in large part of study period, followed by a good correlation with PDO, was identified. The AO and SSTA have showed an inverse relationship in some periods. Solar Cycle has showed to be a modulator of behavior of SSTA in the selected stations. It was determined that extreme values of SST are related to the analyzed large scale oscillations.


Sign in / Sign up

Export Citation Format

Share Document