Pilot-Scale Microsand-Ballasted Flocculation of Wastewater: Turbidity Removal, Parameters Optimization, and Mechanism Analysis

Author(s):  
Yimin Sang ◽  
Taotao Lu ◽  
Xianchun Lu ◽  
Shuguang Wang ◽  
Xueting Shao ◽  
...  

Abstract The flocs formed during microsand-ballasted flocculation (MBF) have attracted much attention. However, few studies have reported on comprehensive process parameters of MBF and its mechanism is still not well understood. Jar test and pilot-scale continuous experiments were here conducted on two kinds of simulated wastewater, labeled S1 (21.6-25.9 NTU) and S2 (96-105 NTU). Results revealed the hydraulic retention time ratio in the coagulation cell, injection & maturation cell, lamella settler of pilot-scale MBF equipment was 1: 3: 7.3. The optimum poly aluminum chloride doses for Samples S1 and S2 were 0.875 g/L and 1.0 g/L. Besides, the optimum size of microsand was 49-106 µm and the optimum dose was 1.0 g/L. Under aforementioned conditions, the effluent turbidity of S1 was below 0.47 NTU, lower than the Chinese drinking water standard; that of S2 was below 1.7 NTU, meeting the Chinese recycled water standard. Turbidity removal ranged from 98.0% to 98.8% for S1 and 98.5% to 99.5% for S2 when microsand was added. Therefore, microsand addition enhances MBF performance, where microsand serves as an initial core particle. Some microsand core particles bond together to form a dense core structure of micro-flocs by the adsorption bridging of inorganic polymeric flocculant. Moreover, the size of the largest micro-flocs may be controllable as long as the effective energy dissipation ɛ0 is adjusted appropriately through specific stirring speeds. This work provides comprehensive pilot-scale process parameters for using MBF to effectively treat wastewater and offers a clearer explanation of the formation mechanism of microsand-ballasted flocs.

Metals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 190
Author(s):  
Wei Wu ◽  
Jiaxiang Xue ◽  
Wei Xu ◽  
Hongyan Lin ◽  
Heqing Tang ◽  
...  

Serious heat accumulation limits the further efficiency and application in additive manufacturing (AM). This study accordingly proposed a double-wire SS316L stainless steel arc AM with a two-direction auxiliary gas process to research the effect of three parameters, such as auxiliary gas nozzle angle, auxiliary gas flow rate and nozzle-to-substrate distance on depositions, then based on the Box–Behnken Design response surface, a regression equation between three parameters and the total score were established to optimized parameters by an evaluation system. The results showed that samples with nozzle angle of 30° had poor morphology but good properties, and increasing gas flow or decreasing distance would enhance the airflow strength and stiffness, then strongly stir the molten pool and resist the interference. Then a diverse combination of auxiliary process parameters had different influences on the morphology and properties, and an interactive effect on the comprehensive score. Ultimately the optimal auxiliary gas process parameters were 17.4°, 25 L/min and 10.44 mm, which not only bettered the morphology, but refined the grains and improved the properties due to the stirring and cooling effect of the auxiliary gas, which provides a feasible way for quality and efficiency improvements in arc additive manufacturing.


2013 ◽  
Vol 64 (1) ◽  
Author(s):  
Norzita Ngadi ◽  
Nor Aida Yusoff

The study investigated the performance of chitosan and extracted pandan leaves towards treatment of textile wastewater by using flocculation process. Pandan leaves were extracted by using solvent extraction method. Flocculation process was conducted using a Jar test experiment. The effect of dosage, pH, and settling time on reduction of COD, turbidity and color of textile wastewater was studied. The results obtained found that chitosan was very effective for reduction of COD, turbidity, color and indicator for color. The best condition for COD and turbidity removal was achieved at 0.2 g dosage, pH 4 and 60 minutes of settling time. Under this condition, about 58 and 99% of COD and turbidity was removed, respectively. However, the results obtained using extracted pandan was opposite compared to the chitosan. Extracted pandan was not able to remove both COD and turbidity of the waste. 


Sign in / Sign up

Export Citation Format

Share Document