scholarly journals DHMM-Based Asynchronous Finite-Time Sliding Mode Control for Markovian Jumping Lur’e Systems

Author(s):  
Rong NIE ◽  
Wenli DU ◽  
Zhongmei LI ◽  
Zhao ZHOU ◽  
Shuping HE

Abstract This paper is concerned with the asynchronous problem for a class of Markovian jumping Lur’s system (MJLSs) via sliding mode control (SMC) in continuous-time domain. Specifically, the discrete hidden Markovian model (DHMM) is employed to describe the nonsynchronization between the controller modes and the MJLSs modes. In particular, considering the nonlinearity of MJLSs, a novel Lur’e-integral-type sliding surface is constructed. In order to ensure the finite-time stability of sliding mode dynamics and the accessibility of the specified sliding surface, the asynchronous Lur’e-type SMC law of the detector mode is presented. Finally, an example of DC motor is provided to demonstrate the effectiveness of the proposed technique.

Author(s):  
Bin Wang ◽  
Yangquan Chen ◽  
Ying Yang

Abstract This paper studies the chattering-free finite-time control for a class of fractional-order nonlinear systems. First, a class of fractional-order nonlinear systems with external disturbances is presented. Second, a new finite-time terminal sliding mode control method is proposed for the stability control of a class of fractional-order nonlinear systems by combining the finite-time stability theory and sliding mode control scheme. Third, by designing a controller with a differential form and introducing the arc tangent function, the chattering phenomenon is well suppressed. Additionally, a controller is developed to resist external disturbances. Finally, numerical simulations are implemented to demonstrate the feasibility and validity of the proposed method.


2021 ◽  
Vol 40 (1) ◽  
pp. 983-999
Author(s):  
Huan Li ◽  
Pengyi Tang ◽  
Yuechao Ma

In this paper, a class of observer-based sliding mode controller is designed, and the finite-time H∞ control problem of uncertain T-S fuzzy systems with time-varying is studied. Firstly, an integral-type sliding surface function with time-delay is devised based on the state estimator, and sufficient criteria of finite-time bounded and finite-time H∞ bounded can be obtained for the T-S systems. Moreover, the proposed sliding mode control law is integrated to ensure the dynamics of controlled system into the sliding surface in a finite-time interval. Then, according to the linear matrix inequalities (LMIs), the desired gain matrices of fuzzy sliding mode controller and state estimator are derived. Finally, effectiveness gives some illustrative examples may be used to display the value of the current proposed method as well as a significant improvement.


2011 ◽  
Vol 2011 ◽  
pp. 1-6 ◽  
Author(s):  
Leipo Liu ◽  
Zhengzhi Han ◽  
Zhumu Fu

This paper is concerned with non-fragile sliding mode control of uncertain chaotic systems with external disturbance. Firstly, a new sliding surface is proposed, and sufficient conditions are derived to guarantee that sliding mode dynamics is asymptotically stable with a generalizedH2disturbance rejection level. Secondly, non-fragile sliding mode controller is established to make the state of system reach the sliding surface in a finite time. Finally, an example is given to illustrate the effectiveness of the proposed method.


2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Xiaona Song ◽  
Shuai Song ◽  
Ines Tejado Balsera ◽  
Leipo Liu ◽  
Lei Zhang

The synchronization of two fractional-order complex chaotic systems is discussed in this paper. The parameter uncertainty and external disturbance are included in the system model, and the synchronization of the considered chaotic systems is implemented based on the finite-time concept. First, a novel fractional-order nonsingular terminal sliding surface which is suitable for the considered fractional-order systems is proposed. It is proven that once the state trajectories of the system reach the proposed sliding surface they will converge to the origin within a given finite time. Second, in terms of the established nonsingular terminal sliding surface, combining the fuzzy control and the sliding mode control schemes, a novel robust single fuzzy sliding mode control law is introduced, which can force the closed-loop dynamic error system trajectories to reach the sliding surface over a finite time. Finally, using the fractional Lyapunov stability theorem, the stability of the proposed method is proven. The proposed method is implemented for synchronization of two fractional-order Genesio-Tesi chaotic systems with uncertain parameters and external disturbances to verify the effectiveness of the proposed fractional-order nonsingular terminal fuzzy sliding mode controller.


2019 ◽  
Vol 41 (15) ◽  
pp. 4339-4350 ◽  
Author(s):  
Qingwen Ma ◽  
Jianguo Guo ◽  
Jun Zhou

In this paper, a finite-time control strategy based on back-stepping method combining with a terminal sliding mode control (TSMC) and a nonlinear disturbance observer (NDO) is proposed for the longitudinal dynamic model of hypersonic vehicle (HV). Firstly, the model of HV is transformed into two strict feedback subsystem: the mismatched subsystem of altitude and the matched subsystem of velocity. Then, the TSMC and back-stepping method is incorporated to cope with the unmatched issue in the HV altitude subsystem. In addition, a NDO based on a finite-time-convergent differentiator (FD) is proposed to estimate the lumped disturbances. The finite-time stability condition of the system is established via the Lyapunov theory. Finally, the robustness and effectiveness of the method are verified by simulations.


Sign in / Sign up

Export Citation Format

Share Document