scholarly journals Influence of Aerosols on Atmospheric Gravity Waves at an Urban Tropical Location

Author(s):  
Soumyajyoti Jana ◽  
Gargi Rakshit ◽  
Animesh Maitra

Abstract The elevated layer of heat-absorbing pollutant aerosols causes temperature perturbations in the pre-monsoon period above the boundary layer height (1.6-4 km) as observed over a polluted tropical urban location Kolkata (22°34' N, 88°22' E) during 2007-2016. Satellite observations of different types of aerosols show an increase in aerosol extinction coefficient around 1.6-4 km altitude, enhancing the perturbations in both temperature and wind profiles at that height. The opposing air mass movement within and above the boundary layer, which is strengthened by elevated heat-absorbing aerosols, is illustrated by height profiles of atmospheric vorticity and divergence. This results in higher Brunt-Vaisala frequencies indicating increased atmospheric oscillations. Consequently, atmospheric gravity waves, which manifest the temperature and wind profile perturbations, have enhanced energy in the upper troposphere (6-10 km). Based on multi- technique observations consisting of radiosonde, space-borne lidar and model data, this study reveals the interactions between aerosol and other atmospheric processes such as temperature variations and wind perturbations, which affect the atmospheric instability and increase gravity wave activities during the pre-monsoon period over a tropical metropolis.

2013 ◽  
Vol 70 (11) ◽  
pp. 3448-3459 ◽  
Author(s):  
Xiaofeng Li ◽  
Weizhong Zheng ◽  
Xiaofeng Yang ◽  
Jun A. Zhang ◽  
William G. Pichel ◽  
...  

Abstract Both atmospheric gravity waves (AGW) and marine atmospheric boundary layer (MABL) rolls are simultaneously observed on an Environmental Satellite (Envisat) advanced synthetic aperture radar (ASAR) image acquired along the China coast on 22 May 2005. The synthetic aperture radar (SAR) image covers about 400 km × 400 km of a coastal area of the Yellow Sea. The sea surface imprints of AGW show the patterns of both a transverse wave along the coastal plain and a diverging wave in the lee of Mount Laoshan (1133-m peak), which indicate that terrain forcing affects the formation of AGW. The AGW have a wavelength of 8–10 km and extend about 100 km offshore. Model simulation shows that these waves have an amplitude over 3 km. Finer-scale (~2 km) brushlike roughness features perpendicular to the coast are also observed, and they are interpreted as MABL rolls. The FFT analysis shows that the roll wavelengths vary spatially. The two-way interactive, triply nested grid (9–3–1 km) Weather Research and Forecasting Model (WRF) simulation reproduces AGW-generated wind perturbations that are in phase at all levels, reaching up to the 700-hPa level for the diverging AGW and the 900-hPa level for the transverse AGW. The WRF simulation also reveals that dynamic instability, rather than thermodynamic instability, is the cause for the MABL roll generation. Differences in atmospheric inflection-point level and instability at different locations are reasons why the roll wavelengths vary spatially.


2007 ◽  
Vol 7 (5) ◽  
pp. 625-628 ◽  
Author(s):  
A. Rozhnoi ◽  
M. Solovieva ◽  
O. Molchanov ◽  
P.-F. Biagi ◽  
M. Hayakawa

Abstract. We analyze variations of the LF subionospheric signal amplitude and phase from JJY transmitter in Japan (F=40 kHz) received in Petropavlovsk-Kamchatsky station during seismically quiet and active periods including also periods of magnetic storms. After 20 s averaging, the frequency range of the analysis is 0.28–15 mHz that corresponds to the period range from 1 to 60 min. Changes in spectra of the LF signal perturbations are found several days before and after three large earthquakes, which happened in November 2004 (M=7.1), August 2005 (M=7.2) and November 2006 (M=8.2) inside the Fresnel zone of the Japan-Kamchatka wavepath. Comparing the perturbed and background spectra we have found the evident increase in spectral range 10–25 min that is in the compliance with theoretical estimations on lithosphere-ionosphere coupling by the Atmospheric Gravity Waves (T>6 min). Similar changes are not found for the periods of magnetic storms.


1997 ◽  
Vol 15 (8) ◽  
pp. 1048-1056 ◽  
Author(s):  
R. L. Balthazor ◽  
R. J. Moffett

Abstract. A global coupled thermosphere-ionosphere-plasmasphere model is used to simulate a family of large-scale imperfectly ducted atmospheric gravity waves (AGWs) and associated travelling ionospheric disturbances (TIDs) originating at conjugate magnetic latitudes in the north and south auroral zones and subsequently propagating meridionally to equatorial latitudes. A 'fast' dominant mode and two slower modes are identified. We find that, at the magnetic equator, all the clearly identified modes of AGW interfere constructively and pass through to the opposite hemisphere with unchanged velocity. At F-region altitudes the 'fast' AGW has the largest amplitude, and when northward propagating and southward propagating modes interfere at the equator, the TID (as parameterised by the fractional change in the electron density at the F2 peak) increases in magnitude at the equator. The amplitude of the TID at the magnetic equator is increased compared to mid-latitudes in both upper and lower F-regions with a larger increase in the upper F-region. The ionospheric disturbance at the equator persists in the upper F-region for about 1 hour and in the lower F-region for 2.5 hours after the AGWs first interfere, and it is suggested that this is due to enhancements of the TID by slower AGW modes arriving later at the magnetic equator. The complex effects of the interplays of the TIDs generated in the equatorial plasmasphere are analysed by examining neutral and ion winds predicted by the model, and are demonstrated to be consequences of the forcing of the plasmasphere along the magnetic field lines by the neutral air pressure wave.


Nature ◽  
1973 ◽  
Vol 246 (5433) ◽  
pp. 412-413 ◽  
Author(s):  
J. E. BECKMAN ◽  
J. I. CLUCAS

2021 ◽  
Author(s):  
Francisco Brasil ◽  
Pedro Machado ◽  
Gabriella Gilli ◽  
Alejandro Cardesín-Moinelo ◽  
José E. Silva ◽  
...  

2018 ◽  
Vol 13 (4) ◽  
pp. 36
Author(s):  
Ranis Ibragimov ◽  
Pirooz Mohazzabi ◽  
Rebecca Roembke ◽  
Justin Van Ee

We examine stability of the vortex that represents one particular class of exact solution of a a nonlinear shallow water model describing atmospheric gravity waves circulating in an equatorial plane of a spherical planet. The mathematical model is represented by a two-dimensional free boundary Cauchy–Poisson problem on the nonstationary motion of a perfect uid around a solid circle with a sufficiently large radius so that the gravity is directed to the center of the circle. It is shown that the model admits two functionally independent nonlinear systems of shallow water equations. Two essential parameters that control stability of the vortex for both systems are identified. The order of their importance is analyzed and it is shown that one of the systems is more resistant to small perturbations and remains stable for larger range of these two parameters.


Sign in / Sign up

Export Citation Format

Share Document