scholarly journals Characterization of Nanofluids Using Multifractal Analysis of a Liquid Droplet Trace

Author(s):  
Jakub Augustyniak ◽  
Izabela Zgłobicka ◽  
Krzysztof Jan Kurzydłowski ◽  
Paweł Misiak ◽  
Agnieszka Zofia Wilczewska ◽  
...  

Abstract This paper presents a novel approach to the analysis of nanofluids by using a nonlinear multifractal algorithm. Multifractal analysis allows to present detailed local descriptions of complex scaling behavior using a spectrum of singularity exponents. Nanoliquids prepared from nanoparticles of SiO2 (~0,01g) suspended in 100 ml of demineralized water and in 100 ml of 99,5% isopropanol were subjected to classical methods of analysis: determination of the contact angle, determination of the zeta potential, pH, and examination with a particle size analyzer. The obtained results show that the obtained nanofluid is stable and well prepared, while further nonlinear analyzes show that the usage of multifractal analysis for nanofluids can significantly improve both the process of analyzing this issue as well as its preparation, based on the multifractional spectrum.

2019 ◽  
Vol 12 ◽  
pp. 117863611882508 ◽  
Author(s):  
Hallie H Dolin ◽  
Thomas J Papadimos ◽  
Xiaohuan Chen ◽  
Zhixing K Pan

Pathogenic sepsis is not a monolithic condition. Three major types of sepsis exist within this category: bacterial, viral, and fungal, each with its own mechanism of action. While similar in symptoms, the etiologies and immune mechanisms of these types differ enough that a discrete patient base can be recognized for each one. Non-specific treatment, such as broad-spectrum antibiotics, without determination of sepsis origins may worsen sepsis symptoms and leads to increased morbidity and mortality in patients. However, recognition of current and historical patterns in likely patients for each sepsis type may aid in differentiation between pathogens prior to definitive blood testing. Clinicians may ultimately be able to diagnose and treat bacterial, viral, and fungal sepsis using analysis of previous patient patterns and circumstances in addition to standard care. This method is likely to decrease incidence of multidrug-resistant organisms, organ failure due to ineffective treatment, and turnaround time to the correct treatment for each sepsis patient. Ultimately, we aim to provide classification information on these patient populations and to suggest epidemiology-based screening methods that can be integrated into critical care medicine, specifically triage and treatment of sepsis.


2020 ◽  
Vol 18 (1) ◽  
Author(s):  
Jones Hutauruk

The aim of this study is to obtain characteristics of ammonium perchlorate particle that used in Rocket Technology Center (LAPAN). Characterization begin from the determination of particle size distribution with Particle Size Analyzer. The SEM is used to obtain information about the morphology of AP, furthermore, the results are reprocessed using ImageJ software to analyze the shape of AP particle, and the Surface area was obtained by using BET. Characteristic of AP such as particle size, shape, and surface area are important parameters because those are directly related to propellant combustion energy. Ammonium perchlorate was procured from China, South Korea, and Indonesia with a particle size of 200µm From this study, the particle size of APC200, APH200 and API200 was obtained, which are 265 µm, 236 µm, and 242 µm, with particle shape aggregate value of 0,68, 0,38 and 0,33, roundness of 0,57, 0,79,0,63, and surface area of 1,104 m2/g, 5,561 m2/g, and 2,972 m2/g.


2020 ◽  
Vol 35 (3) ◽  
pp. 548-559 ◽  
Author(s):  
Ping Tan ◽  
Jingjing Yang ◽  
Volker Nischwitz

Full elemental characterization of particle suspensions by monitoring the dissolved and the particulate fractions within the same FFF run.


2020 ◽  
Vol 11 (1) ◽  
pp. 93-99
Author(s):  
Abu Zakir Morshed ◽  
Sheikh Shakib ◽  
Tanzim Jahin

Corrosion of reinforcement is an important durability concern for the structures exposed to coastal regions. Since corrosion of reinforcement involves long periods of time, impressed current technique is usually used to accelerate the corrosion of reinforcement in laboratories. Characterization of impressed current technique was the main focus of this research,which involved determination of optimum chloride content and minimum immersion time of specimens for which the application of Faraday’s law could be efficient. To obtain optimum chloride content, the electrolytes in the corrosion cell were prepared similar to that of concrete pore solutions. Concrete prisms of 200 mm by 200 mm by 300 mm were used to determine the minimum immersion time for saturation. It was found that the optimum chloride content was 35 gm/L and the minimum immersion time for saturation was 140 hours. Accounting the results, a modified expression based on Faraday’s law was proposed to calculate weight loss due to corrosion. Journal of Engineering Science 11(1), 2020, 93-99


2008 ◽  
Vol 2 (2) ◽  
pp. 155-177 ◽  
Author(s):  
Eugene Brently Young
Keyword(s):  

Eternal return is the paradox that accounts for the interplay between difference and repetition, a dynamic at the heart of Deleuze's philosophy, and Blanchot's approach to this paradox, even and especially through what it elides, further illuminates it. Deleuze draws on Blanchot's characterisations of difference, forgetting, and the unlivable to depict the ‘sense’ produced via eternal return, which, for Blanchot, is where repetition implicates or ‘carries’ pure difference. However, for Deleuze, difference and the unlivable are also developed by the living repetition or ‘contraction’ of habit, which results in his distinctive characterization of ‘force’, ‘levity’, and sense in eternal return.


2018 ◽  
Author(s):  
D. Basak ◽  
L. H. Ponce

Abstract Two case-studies on uncommon metals whiskers, performed at the Reliability Analysis Laboratory (RAL) of Northrop Grumman Innovation Systems, are presented. The components analyzed are an Oven Controlled Crystal Oscillator (OCXO) and an Electromechanical Relay. Investigative techniques were used to determine the chemical and physical makeup of the metal whiskers and develop an understanding of the underlying effects and mechanisms that caused the conditions conducive to whisker growth.


Sign in / Sign up

Export Citation Format

Share Document