Bias Correction Method of High-Resolution Satellite-Based Precipitation Product for Peninsular Malaysia

Author(s):  
Zafar Iqbal ◽  
Shamsuddin Shahid ◽  
Kamal Ahmed ◽  
Xiaojun Wang ◽  
Tarmizi Ismail ◽  
...  

Abstract Satellite-based precipitation (SBP) is emerging as a reliable source for high-resolution rainfall estimates over the globe. However, uncertainty in SBP is still significant, limiting their use without evaluation and often without bias correction. The bias correction of SBP remained a challenge for atmospheric scientists. In this study, the performance of six SBPs, namely, SM2RAIN-ASCAT, IMERG, GsMap, CHIRPS, PERSIANN-CDS and PERSIANN-CSS in replicating observed daily rainfall at 364 stations over Peninsular Malaysia was evaluated. The bias of the most suitable SBP was corrected using a novel machine learning (ML)-based bias-correction method. The proposed bias-correction method consists of an ML classifier to correct the bias in estimating rainfall occurrence and an ML regression model to correct the amount of rainfall during rainfall events. The performance of different widely used ML algorithms for classification and regression were evaluated to select the suitable algorithms. IMERG showed better performance, showing a higher correlation coefficient (R2) of 0.57 and Kling-Gupta Efficiency (KGE) of 0.5 compared to the other products. The performance of random forest (RF) was better than the k-nearest neighbourhood (KNN) for both classification and regression. RF classified the rainfall events with a skill score of 0.38 and estimated the rainfall amount of a rainfall event with the modified Index of Agreement (md) of 0.56. Comparison of IMERG and bias-corrected IMERG (BIMERG) revealed an average reduction in RMSE by 55% in simulating observed rainfall. The proposed bias correction method performed much better when compared with the conventional bias correction methods such as linear scaling and quantile regression. The BIMERG could reliably replicate the spatial distribution of heavy rainfall events, indicating its potential for hydro-climatic studies like flood and drought monitoring in the study area.

2021 ◽  
Vol 17 (37) ◽  
pp. 137
Author(s):  
Sarr Alioune Badara ◽  
Diatta Samo ◽  
Kébé Ibourahima ◽  
Sultan Benjamin ◽  
Camara Moctar

In this study, we analyze the impact of bias correction models on present and future precipitation and extremes rainfall events over Senegal. The commonly used linear scaling (LS) bias correction method has been applied on four (4) regional climate models (RCMs) of the Coordinated Regional Climate Downscaling Experiment (CORDEX) program. The linear scaling bias correction method was firstly calibrated and validated during the 1976-1990 and 1991-2005 periods, respectively. The comparison with the observed data revealed that the linear scaling method significantly improves the mean and the extreme precipitations during the validation period. The RCMs generally simulate a decrease of rainfall in the mid-twenty-first century under the RCP8.5 greenhouse gas concentration pathway compared to the reference period (1976-2005), except for the CCLM4 and the RCA4 models which show respectively a slight increase overall Senegal and the east of the country. The changes in precipitation indices such as the number of wet days (R1mm) and mean frequency of heavy rainfall events (R20mm) follows that mean precipitation change distribution. Almost uncorrected RCMs (except RCA4) predict during the near future an increase in of the mean intensity of daily rainfall events (SDII), the mean intensity of precipitation events above the 95th Percentile (R95PTOT) and the mean maximum dry spells length (CDD), whereas a decrease in the mean maximum wet spells length (CWD) is projected. After applying the LS bias correction, the spatial distribution patterns are not so much modified in all the models but the magnitude of the climate change signal is either amplified or moderated depending on the considered variables.


2019 ◽  
Vol 50 (6) ◽  
pp. 1772-1788 ◽  
Author(s):  
Muhammad Noor ◽  
Tarmizi Ismail ◽  
Shamsuddin Shahid ◽  
Mohamed Salem Nashwan ◽  
Shahid Ullah

Abstract Possible changes in rainfall extremes in Peninsular Malaysia were assessed in this study using an ensemble of four GCMs of CMIP5. The performance of four bias correction methods was compared, and the most suitable method was used for downscaling of GCM simulated daily rainfall to the spatial resolution (0.25°) of APHRODITE rainfall. The multi-model ensemble (MME) mean of the downscaled rainfall was developed using a random forest regression algorithm. The MME projected rainfall for four RCPs were compared with APHRODITE rainfall for the base year (1961–2005) to assess the annual and seasonal changes in eight extreme rainfall indices. The results showed power transformation as the most suitable bias correction method. The maximum changes in most of the annual and seasonal extreme rainfall indices were observed for RCP8.5 in the last part of this century. The maximum increase was observed for 1-day and 5 consecutive days' rainfall amount for RCP4.5. Spatial distribution of the changes revealed higher increase of the extremes in the northeast region where rainfall extremes are already very high. The increase in rainfall extremes would increase the possibility of frequent hydrological disasters in Peninsular Malaysia.


Author(s):  
Junichi ARIMURA ◽  
Zhongrui QIU ◽  
Tetsuya OKAYASU ◽  
Koutarou CHICHIBU ◽  
Kunihiro WATANABE ◽  
...  

2007 ◽  
Vol 11 (4) ◽  
pp. 1373-1390 ◽  
Author(s):  
D. Sharma ◽  
A. Das Gupta ◽  
M. S. Babel

Abstract. Global Climate Models (GCMs) precipitation scenarios are often characterized by biases and coarse resolution that limit their direct application for basin level hydrological modeling. Bias-correction and spatial disaggregation methods are employed to improve the quality of ECHAM4/OPYC SRES A2 and B2 precipitation for the Ping River Basin in Thailand. Bias-correction method, based on gamma-gamma transformation, is applied to improve the frequency and amount of raw GCM precipitation at the grid nodes. Spatial disaggregation model parameters (β,σ2), based on multiplicative random cascade theory, are estimated using Mandelbrot-Kahane-Peyriere (MKP) function at q=1 for each month. Bias-correction method exhibits ability of reducing biases from the frequency and amount when compared with the computed frequency and amount at grid nodes based on spatially interpolated observed rainfall data. Spatial disaggregation model satisfactorily reproduces the observed trend and variation of average rainfall amount except during heavy rainfall events with certain degree of spatial and temporal variations. Finally, the hydrologic model, HEC-HMS, is applied to simulate the observed runoff for upper Ping River Basin based on the modified GCM precipitation scenarios and the raw GCM precipitation. Precipitation scenario developed with bias-correction and disaggregation provides an improved reproduction of basin level runoff observations.


Sign in / Sign up

Export Citation Format

Share Document