scholarly journals SparsePro: an efficient genome-wide fine-mapping method integrating summary statistics and functional annotations

Author(s):  
Wenmin Zhang ◽  
Hamed Najafabadi ◽  
Yue Li

Abstract Identifying causal variants from genome-wide association studies (GWASs) is challenging due to widespread linkage disequilibrium (LD). Functional annotations of the genome may help prioritize variants that are biologically relevant and thus improve fine-mapping of GWAS results. However, classical fine-mapping methods have a high computational cost, particularly when the underlying genetic architecture and LD patterns are complex. Here, we propose a novel approach, SparsePro, to efficiently conduct genome-wide fine-mapping. Our method enjoys two major innovations: First, by creating a sparse low-dimensional projection of the high-dimensional genotype data, we enable a linear search of causal variants instead of a combinatorial search of causal configurations used in most existing methods; Second, we adopt a probabilistic framework with a highly efficient variational expectation-maximization algorithm to integrate statistical associations and functional priors. We evaluate SparsePro through extensive simulations using resources from the UK Biobank. Compared to state-of-the-art methods, SparsePro achieved more accurate and well-calibrated posterior inference with greatly reduced computation time. We demonstrate the utility of SparsePro by investigating the genetic architecture of five functional biomarkers of vital organs. We show that, compared to other methods, the causal variants identified by SparsePro are highly enriched for expression quantitative trait loci and explain a larger proportion of trait heritability. We also identify potential causal variants contributing to the genetically encoded coordination mechanisms between vital organs, and pinpoint target genes with potential pleiotropic effects. In summary, we have developed an efficient genome-wide fine-mapping method with the ability to integrate functional annotations. Our method may have wide utility in understanding the genetics of complex traits as well as in increasing the yield of functional follow-up studies of GWASs. SparsePro software is available on GitHub at https://github.com/zhwm/SparsePro.

2021 ◽  
Author(s):  
Wenmin Zhang ◽  
Hamed S Najafabadi ◽  
Yue Li

Identifying causal variants from genome-wide association studies (GWASs) is challenging due to widespread linkage disequilibrium (LD). Functional annotations of the genome may help prioritize variants that are biologically relevant and thus improve fine-mapping of GWAS results. However, classical fine-mapping methods have a high computational cost, particularly when the underlying genetic architecture and LD patterns are complex. Here, we propose a novel approach, SparsePro, to efficiently conduct functionally informed statistical fine-mapping. Our method enjoys two major innovations: First, by creating a sparse low-dimensional projection of the high-dimensional genotype, we enable a linear search of causal variants instead of an exponential search of causal configurations used in existing methods; Second, we adopt a probabilistic framework with a highly efficient variational expectation-maximization algorithm to integrate statistical associations and functional priors. We evaluate SparsePro through extensive simulations using resources from the UK Biobank. Compared to state-of-the-art methods, SparsePro achieved more accurate and well-calibrated posterior inference with greatly reduced computation time. We demonstrate the utility of SparsePro by investigating the genetic architecture of five functional biomarkers of vital organs. We identify potential causal variants contributing to the genetically encoded coordination mechanisms between vital organs and pinpoint target genes with potential pleiotropic effects. In summary, we have developed an efficient genome-wide fine-mapping method with the ability to integrate functional annotations. Our method may have wide utility in understanding the genetics of complex traits as well as in increasing the yield of functional follow-up studies of GWASs.


PLoS Genetics ◽  
2021 ◽  
Vol 17 (9) ◽  
pp. e1009733
Author(s):  
Nathan LaPierre ◽  
Kodi Taraszka ◽  
Helen Huang ◽  
Rosemary He ◽  
Farhad Hormozdiari ◽  
...  

Increasingly large Genome-Wide Association Studies (GWAS) have yielded numerous variants associated with many complex traits, motivating the development of “fine mapping” methods to identify which of the associated variants are causal. Additionally, GWAS of the same trait for different populations are increasingly available, raising the possibility of refining fine mapping results further by leveraging different linkage disequilibrium (LD) structures across studies. Here, we introduce multiple study causal variants identification in associated regions (MsCAVIAR), a method that extends the popular CAVIAR fine mapping framework to a multiple study setting using a random effects model. MsCAVIAR only requires summary statistics and LD as input, accounts for uncertainty in association statistics using a multivariate normal model, allows for multiple causal variants at a locus, and explicitly models the possibility of different SNP effect sizes in different populations. We demonstrate the efficacy of MsCAVIAR in both a simulation study and a trans-ethnic, trans-biobank fine mapping analysis of High Density Lipoprotein (HDL).


Author(s):  
Nathan LaPierre ◽  
Kodi Taraszka ◽  
Helen Huang ◽  
Rosemary He ◽  
Farhad Hormozdiari ◽  
...  

AbstractIncreasingly large Genome-Wide Association Studies (GWAS) have yielded numerous variants associated with many complex traits, motivating the development of “fine mapping” methods to identify which of the associated variants are causal. Additionally, GWAS of the same trait for different populations are increasingly available, raising the possibility of refining fine mapping results further by leveraging different linkage disequilibrium (LD) structures across studies. Here, we introduce multiple study causal variants identification in associated regions (MsCAVIAR), a method that extends the popular CAVIAR fine mapping framework to a multiple study setting using a random effects model. MsCAVIAR only requires summary statistics and LD as input, accounts for uncertainty in association statistics using a multivariate normal model, allows for multiple causal variants at a locus, and explicitly models the possibility of different SNP effect sizes in different populations. In a trans-ethnic, trans-biobank Type 2 Diabetes analysis, we show that MsCAVIAR returns causal set sizes that are over 20% smaller than those given by current state of the art methods for trans-ethnic fine-mapping.


Author(s):  
Alvaro N. Barbeira ◽  
Yanyu Liang ◽  
Rodrigo Bonazzola ◽  
Gao Wang ◽  
Heather E. Wheeler ◽  
...  

AbstractThe integration of transcriptomic studies and GWAS (genome-wide association studies) via imputed expression has seen extensive application in recent years, enabling the functional characterization and causal gene prioritization of GWAS loci. However, the techniques for imputing transcriptomic traits from DNA variation remain underdeveloped. Furthermore, associations found when linking eQTL studies to complex traits through methods like PrediXcan can lead to false positives due to linkage disequilibrium between distinct causal variants. Therefore, the best prediction performance models may not necessarily lead to more reliable causal gene discovery. With the goal of improving discoveries without increasing false positives, we develop and compare multiple transcriptomic imputation approaches using the most recent GTEx release of expression and splicing data on 17,382 RNA-sequencing samples from 948 post-mortem donors in 54 tissues. We find that informing prediction models with posterior causal probability from fine-mapping (dap-g) and borrowing information across tissues (mashr) lead to better performance in terms of number and proportion of significant associations that are colocalized and the proportion of silver standard genes identified as indicated by precision-recall and ROC (Receiver Operating Characteristic) curves. All prediction models are made publicly available at predictdb.org.Author summaryIntegrating molecular biology information with genome-wide association studies (GWAS) sheds light on the mechanisms tying genetic variation to complex traits. However, associations found when linking eQTL studies to complex traits through methods like PrediXcan can lead to false positives due to linkage disequilibrium of distinct causal variants. By integrating fine-mapping information into the models, and leveraging the widespread tissue-sharing of eQTLs, we improve the proportion of likely causal genes among significant gene-trait associations, as well as the prediction of “ground truth” genes.


2018 ◽  
Author(s):  
Jingsi Ming ◽  
Tao Wang ◽  
Can Yang

AbstractMuch effort has been made toward understanding the genetic architecture of complex traits and diseases. Recent results from genome-wide association studies (GWASs) suggest the importance of regulatory genetic effects and pervasive pleiotropy among complex traits. In this study, we propose a unified statistical approach, aiming to characterize relationship among complex traits, and prioritize risk variants by leveraging regulatory information collected in functional annotations. Specifically, we consider a latent probit model (LPM) to integrate summary-level GWAS data and functional annotations. The developed computational framework not only makes LPM scalable to hundreds of annotations and phenotypes, but also ensures its statistically guaranteed accuracy. Through comprehensive simulation studies, we evaluated LPM’s performance and compared it with related methods. Then we applied it to analyze 44 GWASs with nine genic category annotations and 127 cell-type specific functional annotations. The results demonstrate the benefits of LPM and gain insights of genetic architecture of complex traits. The LPM package is available at https://github.com/mingjingsi/LPM.


Author(s):  
Jianhua Wang ◽  
Dandan Huang ◽  
Yao Zhou ◽  
Hongcheng Yao ◽  
Huanhuan Liu ◽  
...  

Abstract Genome-wide association studies (GWASs) have revolutionized the field of complex trait genetics over the past decade, yet for most of the significant genotype-phenotype associations the true causal variants remain unknown. Identifying and interpreting how causal genetic variants confer disease susceptibility is still a big challenge. Herein we introduce a new database, CAUSALdb, to integrate the most comprehensive GWAS summary statistics to date and identify credible sets of potential causal variants using uniformly processed fine-mapping. The database has six major features: it (i) curates 3052 high-quality, fine-mappable GWAS summary statistics across five human super-populations and 2629 unique traits; (ii) estimates causal probabilities of all genetic variants in GWAS significant loci using three state-of-the-art fine-mapping tools; (iii) maps the reported traits to a powerful ontology MeSH, making it simple for users to browse studies on the trait tree; (iv) incorporates highly interactive Manhattan and LocusZoom-like plots to allow visualization of credible sets in a single web page more efficiently; (v) enables online comparison of causal relations on variant-, gene- and trait-levels among studies with different sample sizes or populations and (vi) offers comprehensive variant annotations by integrating massive base-wise and allele-specific functional annotations. CAUSALdb is freely available at http://mulinlab.org/causaldb.


2016 ◽  
Vol 283 (1835) ◽  
pp. 20160569 ◽  
Author(s):  
M. E. Goddard ◽  
K. E. Kemper ◽  
I. M. MacLeod ◽  
A. J. Chamberlain ◽  
B. J. Hayes

Complex or quantitative traits are important in medicine, agriculture and evolution, yet, until recently, few of the polymorphisms that cause variation in these traits were known. Genome-wide association studies (GWAS), based on the ability to assay thousands of single nucleotide polymorphisms (SNPs), have revolutionized our understanding of the genetics of complex traits. We advocate the analysis of GWAS data by a statistical method that fits all SNP effects simultaneously, assuming that these effects are drawn from a prior distribution. We illustrate how this method can be used to predict future phenotypes, to map and identify the causal mutations, and to study the genetic architecture of complex traits. The genetic architecture of complex traits is even more complex than previously thought: in almost every trait studied there are thousands of polymorphisms that explain genetic variation. Methods of predicting future phenotypes, collectively known as genomic selection or genomic prediction, have been widely adopted in livestock and crop breeding, leading to increased rates of genetic improvement.


2018 ◽  
Author(s):  
Doug Speed ◽  
David J Balding

LD Score Regression (LDSC) has been widely applied to the results of genome-wide association studies. However, its estimates of SNP heritability are derived from an unrealistic model in which each SNP is expected to contribute equal heritability. As a consequence, LDSC tends to over-estimate confounding bias, under-estimate the total phenotypic variation explained by SNPs, and provide misleading estimates of the heritability enrichment of SNP categories. Therefore, we present SumHer, software for estimating SNP heritability from summary statistics using more realistic heritability models. After demonstrating its superiority over LDSC, we apply SumHer to the results of 24 large-scale association studies (average sample size 121 000). First we show that these studies have tended to substantially over-correct for confounding, and as a result the number of genome-wide significant loci has under-reported by about 20%. Next we estimate enrichment for 24 categories of SNPs defined by functional annotations. A previous study using LDSC reported that conserved regions were 13-fold enriched, and found a further twelve categories with above 2-fold enrichment. By contrast, our analysis using SumHer finds that conserved regions are only 1.6-fold (SD 0.06) enriched, and that no category has enrichment above 1.7-fold. SumHer provides an improved understanding of the genetic architecture of complex traits, which enables more efficient analysis of future genetic data.


2018 ◽  
Vol 77 (7) ◽  
pp. 1078-1084 ◽  
Author(s):  
Yong-Fei Wang ◽  
Yan Zhang ◽  
Zhengwei Zhu ◽  
Ting-You Wang ◽  
David L Morris ◽  
...  

ObjectivesSystemic lupus erythematosus (SLE) is a prototype autoimmune disease with a strong genetic component in its pathogenesis. Through genome-wide association studies (GWAS), we recently identified 10 novel loci associated with SLE and uncovered a number of suggestive loci requiring further validation. This study aimed to validate those loci in independent cohorts and evaluate the role of SLE genetics in drug repositioning.MethodsWe conducted GWAS and replication studies involving 12 280 SLE cases and 18 828 controls, and performed fine-mapping analyses to identify likely causal variants within the newly identified loci. We further scanned drug target databases to evaluate the role of SLE genetics in drug repositioning.ResultsWe identified three novel loci that surpassed genome-wide significance, including ST3AGL4 (rs13238909, pmeta=4.40E-08), MFHAS1 (rs2428, pmeta=1.17E-08) and CSNK2A2 (rs2731783, pmeta=1.08E-09). We also confirmed the association of CD226 locus with SLE (rs763361, pmeta=2.45E-08). Fine-mapping and functional analyses indicated that the putative causal variants in CSNK2A2 locus reside in an enhancer and are associated with expression of CSNK2A2 in B-lymphocytes, suggesting a potential mechanism of association. In addition, we demonstrated that SLE risk genes were more likely to be interacting proteins with targets of approved SLE drugs (OR=2.41, p=1.50E-03) which supports the role of genetic studies to repurpose drugs approved for other diseases for the treatment of SLE.ConclusionThis study identified three novel loci associated with SLE and demonstrated the role of SLE GWAS findings in drug repositioning.


Sign in / Sign up

Export Citation Format

Share Document