scholarly journals Integrated Metabolic and Gene Expression Profiling Reveals New Therapeutic Modalities for Rapidly Proliferating Breast Cancers

Author(s):  
Chengheng Liao ◽  
Cherise Ryan Glodowski ◽  
Cheng Fan ◽  
Juan Liu ◽  
Kevin Raynard Mott ◽  
...  

Abstract Metabolic dysregulation, although a prominent feature in breast cancer, remains undercharacterized in patient tumors. By performing untargeted metabolomics analyses on triple-negative breast cancer (TNBC) and Estrogen Receptor (ER) positive patient breast tumors, as well as TNBC patient-derived xenografts (PDXs), we identified two major metabolic groups independent of breast cancer histological subtypes: a “Nucleotide/Carbohydrate-Enriched” group and a “Lipid/Fatty Acid-Enriched” group. Cell lines grown in vivo more faithfully recapitulate the metabolic profiles of patient tumors. Integrated metabolic and gene expression analyses reveal genes that strongly correlate with metabolic dysregulation and predict patient prognosis. As a proof-of-principle, targeting Nucleotide/Carbohydrate-Enriched TNBC cell line or PDX xenografts with a pyrimidine biosynthesis inhibitor, and/or a glutaminase inhibitor, led to therapeutic efficacy. In addition, the pyrimidine biosynthesis inhibitor presents better therapeutic outcomes than chemotherapy agents in multiple murine TNBC models. Our study provides a new stratification of breast tumor samples based on integrated metabolic and gene expression profiling, which guides the selection of newly effective therapeutic strategies targeting rapidly proliferating breast cancer subsets. In addition, we develop a public, interactive data visualization portal (http://brcametab.org) based on the data generated from this study.

2020 ◽  
Author(s):  
Chengheng Liao ◽  
Cherise Ryan Glodowski ◽  
Cheng Fan ◽  
Juan Liu ◽  
Kevin Raynard Mott ◽  
...  

Abstract Metabolic dysregulation is one of the distinctive features in breast cancer. However, examining the metabolic features in various subtypes of breast cancer in their relationship to gene expression features in a physiologically relevant setting remains understudied. By performing metabolic profiling on triple-negative breast cancer (TNBC) and ER+ breast cancers from patients, TNBC patient-derived xenografts (PDXs), and representative breast cancer cell lines grown as tumors in vivo, we identify two distinctive groups defined by metabolites; a “Nucleotide-Enriched” group that shows high levels of pyrimidine pathway metabolites and biosynthetic enzymes, and a “Arginine Biosynthesis-Enriched” group that shows high levels of arginine biosynthesis intermediates. We reveal different metabolic enrichment profiles between cell lines grown in vitro versus in vivo, where cell lines grown in vivo more faithfually recapitulate patient tumors metabolic profiles. In addition, with integrated metabolic and gene expression profiling we identify a subset of genes that strongly correlates with the Nucleotide-Enriched metabolic profile, and which strongly predicts patient prognosis. As a proof-of-principle, when we target Nucleotide-Enriched metabolic dysregulation with a pyrimidine biosynthesis inhibitor (Brequinar), and/or a glutaminase inhibitor (CB-839), we observe therapeutic efficacy and decreased tumor growth in representative TNBC cell lines and an in vivo PDX upon combinatorial drug treatment. Our study reveals new therapeutic opportunities in breast cancer guided by a genomic biomarker, which could prove highly impactful for rapidly proliferating breast cancers specifically.


2006 ◽  
Vol 66 (9) ◽  
pp. 4636-4644 ◽  
Author(s):  
François Bertucci ◽  
Pascal Finetti ◽  
Nathalie Cervera ◽  
Emmanuelle Charafe-Jauffret ◽  
Emilie Mamessier ◽  
...  

PLoS ONE ◽  
2014 ◽  
Vol 9 (10) ◽  
pp. e109742 ◽  
Author(s):  
Fengliang Wang ◽  
Sheng Gao ◽  
Fei Chen ◽  
Ziyi Fu ◽  
Hong Yin ◽  
...  

2005 ◽  
Vol 7 (6) ◽  
pp. 380-389 ◽  
Author(s):  
Nina Oestreicher ◽  
Scott D Ramsey ◽  
Hannah M Linden ◽  
Jeannine S McCune ◽  
Laura J van't Veer ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document