Deep Robust Residual Network for Brain MRI Super-Resolution
Abstract Spatial resolution is a key factor of quantitatively evaluating the quality of magnetic resonance imagery (MRI). Super-resolution (SR) approaches can improve its spatial resolution by reconstructing high-resolution (HR) images from low-resolution (LR) ones to meet clinical and scientific requirements. To increase the quality of brain MRI, we study a robust residual-learning SR network (RRLSRN) to generate a sharp HR brain image from an LR input. Given that the Charbonnier loss can handle outliers well, and Gradient Difference Loss (GDL) can sharpen an image, we combine the Charbonnier loss and GDL to improve the robustness of the model and enhance the texture information of SR results. Two MRI datasets of adult brain, Kirby 21 and NAMIC, were used to train and verify the effectiveness of our model. To further verify the generalizability and robustness of the proposed model, we collected eight clinical fetal brain MRI data for evaluation. The experimental results show that the proposed deep residual-learning network achieved superior performance and high efficiency over other compared methods.