scholarly journals High-Efficiency Microsatellite-Using Super-Resolution Algorithm Based on the Multi-Modality Super-CMOS Sensor

Sensors ◽  
2020 ◽  
Vol 20 (14) ◽  
pp. 4019
Author(s):  
Ke Zhang ◽  
Cankun Yang ◽  
Xiaojuan Li ◽  
Chunping Zhou ◽  
Ruofei Zhong

To realize the application of super-resolution technology from theory to practice, and to improve microsatellite spatial resolution, we propose a special super-resolution algorithm based on the multi-modality super-CMOS sensor which can adapt to the limited operation capacity of microsatellite computers. First, we designed an oblique sampling mode with the sensor rotated at an angle of 26.56 ∘ ( arctan 1 2 ) to obtain high overlap ratio images with sub-pixel displacement. Secondly, the proposed super-resolution algorithm was applied to reconstruct the final high-resolution image. Because the satellite equipped with this sensor is scheduled to be launched this year, we also designed the simulation mode of conventional sampling and the oblique sampling of the sensor to obtain the comparison and experimental data. Lastly, we evaluated the super-resolution quality of images, the effectiveness, the practicality, and the efficiency of the algorithm. The results of the experiments showed that the satellite-using super-resolution algorithm combined with multi-modality super-CMOS sensor oblique-mode sampling can increase the spatial resolution of an image by about 2 times. The algorithm is simple and highly efficient, and can realize the super-resolution reconstruction of two remote-sensing images within 0.713 s, which has good performance on the microsatellite.

Symmetry ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 681
Author(s):  
Krzysztof Malczewski

Lately, Magnetic Resonance scans have struggled with their own inherent limitations, such as spatial resolution as well as long examination times. A novel, rapid compressively-sensed magnetic resonance high-resolution image resolution algorithm is presented in this research paper. This technique addresses these two key issues by employing a highly-sparse sampling scheme and super-resolution reconstruction (SRR) method. Due to highly challenging requirements for the accuracy of diagnostic images registration, the presented technique exploits image priors, deblurring, parallel imaging, and a deformable human body motion analysis. Clinical trials as well as a phantom-based study have been conducted. It has been proven that the proposed algorithm can enhance image spatial resolution and reduce motion artefacts and scan times.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Liyao Song ◽  
Quan Wang ◽  
Ting Liu ◽  
Haiwei Li ◽  
Jiancun Fan ◽  
...  

AbstractSpatial resolution is a key factor of quantitatively evaluating the quality of magnetic resonance imagery (MRI). Super-resolution (SR) approaches can improve its spatial resolution by reconstructing high-resolution (HR) images from low-resolution (LR) ones to meet clinical and scientific requirements. To increase the quality of brain MRI, we study a robust residual-learning SR network (RRLSRN) to generate a sharp HR brain image from an LR input. Due to the Charbonnier loss can handle outliers well, and Gradient Difference Loss (GDL) can sharpen an image, we combined the Charbonnier loss and GDL to improve the robustness of the model and enhance the texture information of SR results. Two MRI datasets of adult brain, Kirby 21 and NAMIC, were used to train and verify the effectiveness of our model. To further verify the generalizability and robustness of the proposed model, we collected eight clinical fetal brain MRI 2D data for evaluation. The experimental results have shown that the proposed deep residual-learning network achieved superior performance and high efficiency over other compared methods.


2020 ◽  
Author(s):  
Liyao Song ◽  
Quan Wang ◽  
Ting Liu ◽  
Haiwei Li ◽  
Jiancun Fan ◽  
...  

Abstract Spatial resolution is a key factor of quantitatively evaluating the quality of magnetic resonance imagery (MRI). Super-resolution (SR) approaches can improve its spatial resolution by reconstructing high-resolution (HR) images from low-resolution (LR) ones to meet clinical and scientific requirements. To increase the quality of brain MRI, we study a robust residual-learning SR network (RRLSRN) to generate a sharp HR brain image from an LR input. Given that the Charbonnier loss can handle outliers well, and Gradient Difference Loss (GDL) can sharpen an image, we combine the Charbonnier loss and GDL to improve the robustness of the model and enhance the texture information of SR results. Two MRI datasets of adult brain, Kirby 21 and NAMIC, were used to train and verify the effectiveness of our model. To further verify the generalizability and robustness of the proposed model, we collected eight clinical fetal brain MRI data for evaluation. The experimental results show that the proposed deep residual-learning network achieved superior performance and high efficiency over other compared methods.


Author(s):  
R. S. Hansen ◽  
D. W. Waldram ◽  
T. Q. Thai ◽  
R. B. Berke

Abstract Background High-resolution Digital Image Correlation (DIC) measurements have previously been produced by stitching of neighboring images, which often requires short working distances. Separately, the image processing community has developed super resolution (SR) imaging techniques, which improve resolution by combining multiple overlapping images. Objective This work investigates the novel pairing of super resolution with digital image correlation, as an alternative method to produce high-resolution full-field strain measurements. Methods First, an image reconstruction test is performed, comparing the ability of three previously published SR algorithms to replicate a high-resolution image. Second, an applied translation is compared against DIC measurement using both low- and super-resolution images. Third, a ring sample is mechanically deformed and DIC strain measurements from low- and super-resolution images are compared. Results SR measurements show improvements compared to low-resolution images, although they do not perfectly replicate the high-resolution image. SR-DIC demonstrates reduced error and improved confidence in measuring rigid body translation when compared to low resolution alternatives, and it also shows improvement in spatial resolution for strain measurements of ring deformation. Conclusions Super resolution imaging can be effectively paired with Digital Image Correlation, offering improved spatial resolution, reduced error, and increased measurement confidence.


Author(s):  
Darakhshan R. Khan

Region filling which has another name inpainting, is an approach to find the values of missing pixels from data available in the remaining portion of the image. The missing information must be recalculated in a distinctly convincing manner, such that, image look seamless. This research work has built a methodology for completely automating patch priority based region filling process. To reduce the computational time, low resolution image is constructed from input image. Based on texel of an image, patch size is determined. Several low resolution image with missing region filled is generated using region filling algorithm. Pixel information from these low resolution images is consolidated to produce single low resolution region filled image. Finally, super resolution algorithm is applied to enhance the quality of image and regain all specifics of image. This methodology of identifying patch size based on input fed has an advantage over filling algorithms which in true sense automate the process of region filling, to deal with sensitivity in region filling, algorithm different parameter settings are used and functioning with coarse version of image will notably reduce the computational time.


2020 ◽  
Vol 12 (8) ◽  
pp. 1263 ◽  
Author(s):  
Yingfei Xiong ◽  
Shanxin Guo ◽  
Jinsong Chen ◽  
Xinping Deng ◽  
Luyi Sun ◽  
...  

Detailed and accurate information on the spatial variation of land cover and land use is a critical component of local ecology and environmental research. For these tasks, high spatial resolution images are required. Considering the trade-off between high spatial and high temporal resolution in remote sensing images, many learning-based models (e.g., Convolutional neural network, sparse coding, Bayesian network) have been established to improve the spatial resolution of coarse images in both the computer vision and remote sensing fields. However, data for training and testing in these learning-based methods are usually limited to a certain location and specific sensor, resulting in the limited ability to generalize the model across locations and sensors. Recently, generative adversarial nets (GANs), a new learning model from the deep learning field, show many advantages for capturing high-dimensional nonlinear features over large samples. In this study, we test whether the GAN method can improve the generalization ability across locations and sensors with some modification to accomplish the idea “training once, apply to everywhere and different sensors” for remote sensing images. This work is based on super-resolution generative adversarial nets (SRGANs), where we modify the loss function and the structure of the network of SRGANs and propose the improved SRGAN (ISRGAN), which makes model training more stable and enhances the generalization ability across locations and sensors. In the experiment, the training and testing data were collected from two sensors (Landsat 8 OLI and Chinese GF 1) from different locations (Guangdong and Xinjiang in China). For the cross-location test, the model was trained in Guangdong with the Chinese GF 1 (8 m) data to be tested with the GF 1 data in Xinjiang. For the cross-sensor test, the same model training in Guangdong with GF 1 was tested in Landsat 8 OLI images in Xinjiang. The proposed method was compared with the neighbor-embedding (NE) method, the sparse representation method (SCSR), and the SRGAN. The peak signal-to-noise ratio (PSNR) and structural similarity (SSIM) were chosen for the quantitive assessment. The results showed that the ISRGAN is superior to the NE (PSNR: 30.999, SSIM: 0.944) and SCSR (PSNR: 29.423, SSIM: 0.876) methods, and the SRGAN (PSNR: 31.378, SSIM: 0.952), with the PSNR = 35.816 and SSIM = 0.988 in the cross-location test. A similar result was seen in the cross-sensor test. The ISRGAN had the best result (PSNR: 38.092, SSIM: 0.988) compared to the NE (PSNR: 35.000, SSIM: 0.982) and SCSR (PSNR: 33.639, SSIM: 0.965) methods, and the SRGAN (PSNR: 32.820, SSIM: 0.949). Meanwhile, we also tested the accuracy improvement for land cover classification before and after super-resolution by the ISRGAN. The results show that the accuracy of land cover classification after super-resolution was significantly improved, in particular, the impervious surface class (the road and buildings with high-resolution texture) improved by 15%.


2020 ◽  
Vol 12 (5) ◽  
pp. 758 ◽  
Author(s):  
Mengjiao Qin ◽  
Sébastien Mavromatis ◽  
Linshu Hu ◽  
Feng Zhang ◽  
Renyi Liu ◽  
...  

Super-resolution (SR) is able to improve the spatial resolution of remote sensing images, which is critical for many practical applications such as fine urban monitoring. In this paper, a new single-image SR method, deep gradient-aware network with image-specific enhancement (DGANet-ISE) was proposed to improve the spatial resolution of remote sensing images. First, DGANet was proposed to model the complex relationship between low- and high-resolution images. A new gradient-aware loss was designed in the training phase to preserve more gradient details in super-resolved remote sensing images. Then, the ISE approach was proposed in the testing phase to further improve the SR performance. By using the specific features of each test image, ISE can further boost the generalization capability and adaptability of our method on inexperienced datasets. Finally, three datasets were used to verify the effectiveness of our method. The results indicate that DGANet-ISE outperforms the other 14 methods in the remote sensing image SR, and the cross-database test results demonstrate that our method exhibits satisfactory generalization performance in adapting to new data.


Sign in / Sign up

Export Citation Format

Share Document