scholarly journals Numerical Simulation of Spiral Flow and Heat Transfer in Hydrate Pipeline With Long Twisted Band

Author(s):  
Yongchao Rao ◽  
Lijun Li ◽  
Shuli Wang ◽  
Shuhua Zhao ◽  
Shidong Zhou

Abstract The DPM model (discrete phase model) considering the motion of solid particles was used to simulate the complex spiral flow characteristics of hydrate in the pipe spinning up with long twisted band. The deposition and heat transfer characteristics of gas hydrate particles in the pipe spiral flow were studied. The velocity distribution, pressure drop distribution, heat transfer characteristics and particle settling characteristics of the flow field in the pipeline were investigated. The numerical results show that, compared with the straight flow of light pipe without twisted band, two obvious eddies are formed in the flow field under the spinning action of twisted band, and the velocities are maximum at the center of the eddies. Along the direction of the pipe, the two vortices move towards the pipe wall from near the twisted band, which can effectively carry the hydrate particles deposited on the pipe wall. With the same Reynolds number, the greater the twist ratio, the weaker the spiral strength, the smaller the tangential velocity of the spiral flow, and the smaller the pressure drop of the pipe. Therefore, the pressure loss can be reduced as much as possible while ensuring the spinning effect of the spiral flow. In a straight light pipe flow, the Nusser number is in a parabolic shape with the opening downwards. At the center of the pipe, the Nusser number gradually decreases towards the pipe wall at the maximum, and at the near wall, the attenuation gradient of Nu is large. For spiral flow, the curve presented by Nusserr number shows a trough at the center of the pipe and a peak at 1/2 of the pipe diameter. With the reduction of twist rate, the Nussel number becomes larger and larger. Therefore, the spiral flow can make the temperature distribution in the flow field in the pipeline more even, and prevent the large temperature difference resulting in the mass formation of hydrate particles in the pipeline wall. Spiral flow has a good carrying effect. Under the same working condition, the spiral flow carries hydrate particles at a distance about 3-4 times that of the straight flow.

Entropy ◽  
2021 ◽  
Vol 23 (4) ◽  
pp. 489
Author(s):  
Yongchao Rao ◽  
Lijun Li ◽  
Shuli Wang ◽  
Shuhua Zhao ◽  
Shidong Zhou

The natural gas hydrate plugging problems in the mixed pipeline are becoming more and more serious. The hydrate plugging has gradually become an important problem to ensure the safety of pipeline operation. The deposition and heat transfer characteristics of natural gas hydrate particles in the spiral flow pipeline have been studied. The DPM model (discrete phase model) was used to simulate the motion of solid particles, which was used to simulate the complex spiral flow characteristics of hydrate in the pipeline with a long twisted band. The deposition and heat transfer characteristics of gas hydrate particles in the spiral flow pipeline were studied. The velocity distribution, pressure drop distribution, heat transfer characteristics, and particle settling characteristics in the pipeline were investigated. The numerical results showed that compared with the straight flow without a long twisted band, two obvious eddies are formed in the flow field with a long twisted band, and the velocities are maximum at the center of the vortices. Along the direction of the pipeline, the two vortices move toward the pipe wall from near the twisted band, which can effectively carry the hydrate particles deposited on the wall. With the same Reynolds number, the twisted rate was greater, the spiral strength was weaker, the tangential velocity was smaller, and the pressure drop was smaller. Therefore, the pressure loss can be reduced as much as possible with effect of the spiral flow. In a straight light flow, the Nusselt number is in a parabolic shape with the opening downwards. At the center of the pipe, the Nusselt number gradually decreased toward the pipe wall at the maximum, and at the near wall, the attenuation gradient of the Nu number was large. For spiral flow, the curve presented by the Nusselt number was a trough at the center of the pipe and a peak at 1/2 of the pipe diameter. With the reduction of twist rate, the Nusselt number becomes larger. Therefore, the spiral flow can make the temperature distribution more even and prevent the large temperature difference, resulting in the mass formation of hydrate particles in the pipeline wall. Spiral flow has a good carrying effect. Under the same condition, the spiral flow carried hydrate particles at a distance about 3–4 times farther than that of the straight flow.


2013 ◽  
Vol 465-466 ◽  
pp. 500-504 ◽  
Author(s):  
Shahrin Hisham Amirnordin ◽  
Hissein Didane Djamal ◽  
Mohd Norani Mansor ◽  
Amir Khalid ◽  
Md Seri Suzairin ◽  
...  

This paper presents the effect of the changes in fin geometry on pressure drop and heat transfer characteristics of louvered fin heat exchanger numerically. Three dimensional simulation using ANSYS Fluent have been conducted for six different configurations at Reynolds number ranging from 200 to 1000 based on louver pitch. The performance of this system has been evaluated by calculating pressure drop and heat transfer coefficient. The result shows that, the fin pitch and the louver pitch have a very considerable effect on pressure drop as well as heat transfer rate. It is observed that increasing the fin pitch will relatively result in an increase in heat transfer rate but at the same time, the pressure drop will decrease. On the other hand, low pressure drop and low heat transfer rate will be obtained when the louver pitch is increased. Final result shows a good agreement between experimental and numerical results of the louvered fin which is about 12%. This indicates the capability of louvered fin in enhancing the performance of heat exchangers.


Sign in / Sign up

Export Citation Format

Share Document