scholarly journals Magnetization of carbonaceous asteroids by nebular fields and the origin of CM chondrites

Author(s):  
Samuel Courville ◽  
Joseph O'Rourke ◽  
Julie Castillo-Rogez ◽  
Roger Fu ◽  
Rona Oran ◽  
...  

Abstract The solar nebula carried a strong magnetic field that had a stable intensity and direction for periods of a thousand years or more1. The solar nebular field may have produced post-accretional magnetization in at least two groups of meteorites, CM and CV chondrites [1–3], which originated from planetesimals that may have underwent aqueous alteration before gas in the solar nebula dissipated [1,3]. Magnetic minerals produced during aqueous alteration, such as magnetite and pyrrhotite [4], could acquire a chemical remanent magnetization from that nebular field [3]. However, many questions about the size, composition, formation time, and, ultimately, identity of the parent bodies that produced magnetized CM and CV chondrites await answers—including whether a parent body might exhibit a detectable magnetic field today. Here, we use thermal evolution models to show that planetesimals that formed between a few Myr after CAIs and ~1 Myr before the nebular gas dissipated could acquire from the nebular field, and retain until today, a chemical remanent magnetization throughout nearly their entire volume. Hence, in-situ magnetometer measurements of C-type asteroids could help link magnetized asteroids to magnetized meteorites. Specifically, a future mission could search for a magnetic field as part of testing the hypothesis that 2 Pallas is the parent body of the CM chondrites [5]. Overall, large carbonaceous asteroids might record ancient magnetic fields in magnetic remanence that produces strong modern magnetic fields, even without a metallic core that once hosted a dynamo.

2020 ◽  
Vol 6 (18) ◽  
pp. eaba0513 ◽  
Author(s):  
A. Mittelholz ◽  
C. L. Johnson ◽  
J. M. Feinberg ◽  
B. Langlais ◽  
R. J. Phillips

The absence of crustal magnetic fields above the martian basins Hellas, Argyre, and Isidis is often interpreted as proof of an early, before 4.1 billion years (Ga) ago, or late, after 3.9 Ga ago, dynamo. We revisit these interpretations using new MAVEN magnetic field data. Weak fields are present over the 4.5-Ga old Borealis basin, with the transition to strong fields correlated with the basin edge. Magnetic fields, confined to a near-surface layer, are also detected above the 3.7-Ga old Lucus Planum. We conclude that a dynamo was present both before and after the formation of the basins Hellas, Utopia, Argyre, and Isidis. A long-lived, Earth-like dynamo is consistent with the absence of magnetization within large basins if the impacts excavated large portions of strongly magnetic crust and exposed deeper material with lower concentrations of magnetic minerals.


2020 ◽  
Author(s):  
Michael Volk ◽  
Roger Fu ◽  
Josh Feinberg

<p>Rocks have complicated histories and form under various conditions. However, all rocks, terrestrial and extraterrestrial, have been subjected to some form of pressure during their genesis. The effect of pressure (strain) on the magnetic remanence is a largely unexplored problem, with most of the work being focused on the study of meteorites. </p><p>In the absence of a magnetic field, subjecting a rock to pressure can demagnetize the natural remanent magnetization (NRM). This loss of magnetic remanence can lead to an underestimation of paleointensities. On the other hand, in the presence of a magnetic field, magnetic minerals can record a pressure remanent magnetization (PRM). The superposition of the remaining NRM and a newly acquired PRM can influence the remanence direction as well as the paleointensity. Since the reconstruction of the temporal changes of Earths’ magnetic relies on robust estimations of direction and intensity, the effects of pressure on the remanence should be taken into account.</p><p>Here we present a series of experiments that aim to explore the acquisition process of PRMs and their net contribution with respect to the rock’s original magnetization. Stoichiometric magnetites of four different grain sizes (65 nm, 440 nm, 16.9 µm, and 18.3 µm) and magnetic domain states were subjected to crustal pressures (226, 301, and 376 MPa) in the presence of a magnetic field. Surprisingly, the PRM intensity showed no detectable dependence on grain size. However, because the acquisition of a thermal remanence (TRM) is strongly dependent on particle size,  populations of large multidomain particles can acquire a PRM, which may represent up to 30% of a TRM acquired in the same field.</p><p>Finally, we will show how the influence of pressure on the magnetic remanence can be visualized by modern magnetic imaging techniques like the quantum diamond microscope (QDM). The QDM has a  ~1 µm maximum spatial resolution that is able to resolve the magnetic fields of individual mineral assemblages with ~10 µm diameter. The high spatial resolution and sensitivity enables us to visualize the changes in magnetic remanence due to pressure cycling and can help to better understand the possible implications for paleomagnetism.</p>


1994 ◽  
Vol 144 ◽  
pp. 559-564
Author(s):  
P. Ambrož ◽  
J. Sýkora

AbstractWe were successful in observing the solar corona during five solar eclipses (1973-1991). For the eclipse days the coronal magnetic field was calculated by extrapolation from the photosphere. Comparison of the observed and calculated coronal structures is carried out and some peculiarities of this comparison, related to the different phases of the solar cycle, are presented.


1994 ◽  
Vol 144 ◽  
pp. 21-28 ◽  
Author(s):  
G. B. Gelfreikh

AbstractA review of methods of measuring magnetic fields in the solar corona using spectral-polarization observations at microwaves with high spatial resolution is presented. The methods are based on the theory of thermal bremsstrahlung, thermal cyclotron emission, propagation of radio waves in quasi-transverse magnetic field and Faraday rotation of the plane of polarization. The most explicit program of measurements of magnetic fields in the atmosphere of solar active regions has been carried out using radio observations performed on the large reflector radio telescope of the Russian Academy of Sciences — RATAN-600. This proved possible due to good wavelength coverage, multichannel spectrographs observations and high sensitivity to polarization of the instrument. Besides direct measurements of the strength of the magnetic fields in some cases the peculiar parameters of radio sources, such as very steep spectra and high brightness temperatures provide some information on a very complicated local structure of the coronal magnetic field. Of special interest are the results found from combined RATAN-600 and large antennas of aperture synthesis (VLA and WSRT), the latter giving more detailed information on twodimensional structure of radio sources. The bulk of the data obtained allows us to investigate themagnetospheresof the solar active regions as the space in the solar corona where the structures and physical processes are controlled both by the photospheric/underphotospheric currents and surrounding “quiet” corona.


2000 ◽  
Vol 179 ◽  
pp. 263-264
Author(s):  
K. Sundara Raman ◽  
K. B. Ramesh ◽  
R. Selvendran ◽  
P. S. M. Aleem ◽  
K. M. Hiremath

Extended AbstractWe have examined the morphological properties of a sigmoid associated with an SXR (soft X-ray) flare. The sigmoid is cospatial with the EUV (extreme ultra violet) images and in the optical part lies along an S-shaped Hαfilament. The photoheliogram shows flux emergence within an existingδtype sunspot which has caused the rotation of the umbrae giving rise to the sigmoidal brightening.It is now widely accepted that flares derive their energy from the magnetic fields of the active regions and coronal levels are considered to be the flare sites. But still a satisfactory understanding of the flare processes has not been achieved because of the difficulties encountered to predict and estimate the probability of flare eruptions. The convection flows and vortices below the photosphere transport and concentrate magnetic field, which subsequently appear as active regions in the photosphere (Rust & Kumar 1994 and the references therein). Successive emergence of magnetic flux, twist the field, creating flare productive magnetic shear and has been studied by many authors (Sundara Ramanet al.1998 and the references therein). Hence, it is considered that the flare is powered by the energy stored in the twisted magnetic flux tubes (Kurokawa 1996 and the references therein). Rust & Kumar (1996) named the S-shaped bright coronal loops that appear in soft X-rays as ‘Sigmoids’ and concluded that this S-shaped distortion is due to the twist developed in the magnetic field lines. These transient sigmoidal features tell a great deal about unstable coronal magnetic fields, as these regions are more likely to be eruptive (Canfieldet al.1999). As the magnetic fields of the active regions are deep rooted in the Sun, the twist developed in the subphotospheric flux tube penetrates the photosphere and extends in to the corona. Thus, it is essentially favourable for the subphotospheric twist to unwind the twist and transmit it through the photosphere to the corona. Therefore, it becomes essential to make complete observational descriptions of a flare from the magnetic field changes that are taking place in different atmospheric levels of the Sun, to pin down the energy storage and conversion process that trigger the flare phenomena.


1976 ◽  
Vol 32 ◽  
pp. 233-254
Author(s):  
H. M. Maitzen

Ap stars are peculiar in many aspects. During this century astronomers have been trying to collect data about these and have found a confusing variety of peculiar behaviour even from star to star that Struve stated in 1942 that at least we know that these phenomena are not supernatural. A real push to start deeper theoretical work on Ap stars was given by an additional observational evidence, namely the discovery of magnetic fields on these stars by Babcock (1947). This originated the concept that magnetic fields are the cause for spectroscopic and photometric peculiarities. Great leaps for the astronomical mankind were the Oblique Rotator model by Stibbs (1950) and Deutsch (1954), which by the way provided mathematical tools for the later handling pulsar geometries, anti the discovery of phase coincidence of the extrema of magnetic field, spectrum and photometric variations (e.g. Jarzebowski, 1960).


Author(s):  
Paul C. Lauterbur

Nuclear magnetic resonance imaging can reach microscopic resolution, as was noted many years ago, but the first serious attempt to explore the limits of the possibilities was made by Hedges. Resolution is ultimately limited under most circumstances by the signal-to-noise ratio, which is greater for small radio receiver coils, high magnetic fields and long observation times. The strongest signals in biological applications are obtained from water protons; for the usual magnetic fields used in NMR experiments (2-14 tesla), receiver coils of one to several millimeters in diameter, and observation times of a number of minutes, the volume resolution will be limited to a few hundred or thousand cubic micrometers. The proportions of voxels may be freely chosen within wide limits by varying the details of the imaging procedure. For isotropic resolution, therefore, objects of the order of (10μm) may be distinguished.Because the spatial coordinates are encoded by magnetic field gradients, the NMR resonance frequency differences, which determine the potential spatial resolution, may be made very large. As noted above, however, the corresponding volumes may become too small to give useful signal-to-noise ratios. In the presence of magnetic field gradients there will also be a loss of signal strength and resolution because molecular diffusion causes the coherence of the NMR signal to decay more rapidly than it otherwise would. This phenomenon is especially important in microscopic imaging.


2014 ◽  
Vol 2 (2) ◽  
pp. 72-79 ◽  
Author(s):  
Mercedes Florez ◽  
Elvira Martinez ◽  
Victoria Carbonell

The main objective of this study is to determine the effects of 125 mT and 250mT magnetic treatment on the germination and initial growth of triticale seeds. This objective has a practical application in agriculture science: early growth of triticale. An increase in the percentage and rate of germination of seeds and a stimulation of growth of seedlings as positive response to magnetic field treatment in rice, wheat, maize and barley seeds have been found in previous studies. Germination tests were carried out under laboratory conditions by exposing triticale seeds to magnetic field for different times. The effect was studied by exposure of seeds prior sowing. The mean germination time were reduced for all the magnetic treatments applied. Most significant differences were obtained for time of exposure of 1 and 24 hours and maximum reductions was 12%. Furthermore, seedlings from magnetically treated seeds grew taller than control. The longest mean total length was obtained from seedlings exposed to 125 and 250 mT for 24 hours. External magnetic fields are assumed to enhance seed vigor by influencing the biochemical processes by stimulating activity of proteins and enzymes. Numerous studies suggested that magnetic field increases ions uptake and consequently improves nutrition value.


2019 ◽  
Author(s):  
Valentina Guccini ◽  
Sugam Kumar ◽  
Yulia Trushkina ◽  
Gergely Nagy ◽  
Christina Schütz ◽  
...  

The magnetic alignment of cellulose nanocrystals (CNC) and lepidocrocite nanorods (LpN), pristine and in hybrid suspensions has been investigated using contrast-matched small-angle neutron scattering (SANS) under in situ magnetic fields (0 – 6.8 T) and polarized optical microscopy. The pristine CNC (diamagnetic) and pristine LpN (paramagnetic) align perpendicular and parallel to the direction of field, respectively. The alignment of both the nanoparticles in their hybrid suspensions depends on the relative amount of the two components (CNC and LpN) and strength of the applied magnetic field. In the presence of 10 wt% LpN and fields < 1.0 T, the CNC align parallel to the field. In the hybrid containing lower amount of LpN (1 wt%), the ordering of CNC is partially frustrated in all range of magnetic field. At the same time, the LpN shows both perpendicular and parallel orientation, in the presence of CNC. This study highlights that the natural perpendicular ordering of CNC can be switched to parallel by weak magnetic fields and the incorporation of paramagnetic nanoparticle as LpN, as well it gives a method to influence the orientation of LpN.<br>


Sign in / Sign up

Export Citation Format

Share Document