scholarly journals Zeolite-X Encapsulated Ni(II) and Co(II) Complexes with 2,6-Pyridine Dicarboxylic Acid as Catalysts for Oxidative Degradation of Atenolol in an Aqueous Solution

Author(s):  
Fatemeh Hassani ◽  
Mahboubeh A. Sharif ◽  
Masoumeh Tabatabaee ◽  
Mahboobeh Mahmoodi

Abstract Complexes of Co (II) and Ni (II) with dipicolinic acid, 2,6-pyridine dicarboxylic acid (PydcH2) have been synthesized in the NaX (zeolite-X) nanopores. The formation of zeolite X encapsulated Co(II) and Ni(II) complexes ([M(pydcH)2]-NaX, where M = Co(II) and Ni(II]) were confirmed using spectroscopic methods of FT-IR, elemental analysis, XRD, FE-SEM, and TEM. It was affirmed that the encapsulation of complexes in NaX pores was performed without changes in the structure and shape of the zeolite. The oxidative degradation reaction of atenolol with hydrogen peroxide as an oxidant was performed in the presence of synthesized [M(pydcH)2]-NaX nanocomposites to study their catalytic activity. Therefore, oxidation of atenolol was performed under different conditions of catalyst, temperature, and time. Under optimal conditions, catalysts [Co(pydcH)2]-NaX and [Ni(pydcH)2]-NaX showed 82.3% and 71.1% activity of atenolol oxidation, respectively. These catalysts were stable after recovery and were used three more times. The results showed that these catalysts were reusable and had a reduction in the catalytic activity of less than ten percent.

2006 ◽  
Vol 102 (4) ◽  
pp. 365-368 ◽  
Author(s):  
Nobuko Watanabe ◽  
Maki Hattori ◽  
Eiji Yokoyama ◽  
Shigeki Isomura ◽  
Minoru Ujita ◽  
...  

2021 ◽  
Vol 316 ◽  
pp. 56-61
Author(s):  
N.P. Shabelskaya ◽  
M.A. Egorova ◽  
E.V. Vasilieva

The present research is devoted to the formation process of a nanoscale composite material with the composition of CoFe2O4/α-Fe2O3. The synthesized material has been studied by the following methods: x-ray phase analysis and scanning electron microscopy. The produced sample is analyzed to be a CoFe2O4 cabic spinel with a unit cell parameters of a = 0.8394 nm and α-Fe2O3. The average crystallite size of the resulting samples, determined by the Debye-Scherrer equation, is 4.8 nm for the cobalt (II) ferrite and 7.9 nm for α-Fe2O3. Reaction rate increase is determined by the incease in hydrogen peroxide amount in the solution. The synthesized composite material is found to exhibit increased catalytic activity in the oxidative degradation reaction of organic dye by hydrogen peroxide. The catalytic activity is established to be particularly high, when the process is occurring in acidic medium. The obtained samples have a highly developed surface and may be of interest as catalysts, adsorbents.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mohammad Hossein Abdollahi-Basir ◽  
Boshra Mirhosseini-Eshkevari ◽  
Farzad Zamani ◽  
Mohammad Ali Ghasemzadeh

AbstractA one-pot three component reaction of benzaldehydes, 1H-tetrazole-5-amine, and 3-cyanoacetyl indole in the presence of a new hexamethylenetetramine-based ionic liquid/MIL-101(Cr) metal–organic framework as a recyclable catalyst was explored. This novel catalyst, which was fully characterized by XRD, FE-SEM, EDX, FT-IR, TGA, BET, and TEM exhibited outstanding catalytic activity for the preparation of a range of pharmaceutically important tetrazolo[1,5-a]pyrimidine-6-carbonitriles with good to excellent yields in short reaction time.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Xiaoliang Liu ◽  
Jing Shi ◽  
Guang Yang ◽  
Jian Zhou ◽  
Chuanming Wang ◽  
...  

AbstractZeolite morphology is crucial in determining their catalytic activity, selectivity and stability, but quantitative descriptors of such a morphology effect are challenging to define. Here we introduce a descriptor that accounts for the morphology effect in the catalytic performances of H-ZSM-5 zeolite for C4 olefin catalytic cracking. A series of H-ZSM-5 zeolites with similar sheet-like morphology but different c-axis lengths were synthesized. We found that the catalytic activity and stability is improved in samples with longer c-axis. Combining time-resolved in-situ FT-IR spectroscopy with molecular dynamics simulations, we show that the difference in catalytic performance can be attributed to the anisotropy of the intracrystalline diffusive propensity of the olefins in different channels. Our descriptor offers mechanistic insight for the design of highly effective zeolite catalysts for olefin cracking.


2010 ◽  
Vol 150-151 ◽  
pp. 1710-1713
Author(s):  
Ying Jie Zhang ◽  
Yue Xiao Tian ◽  
Da Peng Li ◽  
Guo Rui Liu ◽  
Li Zhang ◽  
...  

A new Fenton-like catalyst was prepared to degrade Orange IV in water by catalytic decomposition of H2O2. The optimal preparation conditions were discussed. The catalytic activity of catalyst was evaluated by the degradation of Orange IV and the decomposition of H2O2. The results show that solid super acid (S2O82-/FexOy) soaked in (NH4)2S2O8 is the most effective catalyst among the synthesized iron oxides soaked in other oxidants. The optimal conditions for solid super acid preparation are calcined at 500 for 2 h in the air.


Sign in / Sign up

Export Citation Format

Share Document