Predictive Values of Multiple Non-Invasive Markers for Myocardial Fibrosis in Hypertrophic Cardiomyopathy Patients With Preserved Ejection Fraction

Author(s):  
Yumin Li ◽  
Jia Liu ◽  
Yukun Cao ◽  
Xiaoyu Han ◽  
Guozhu Shao ◽  
...  

Abstract Myocardial fibrosis assessed by late gadolinium enhancement (LGE) on cardiovascular magnetic resonance (CMR) is associated with cardiovascular outcomes in hypertrophic cardiomyopathy (HCM) patients, but little is known about the utility of non-invasive markers for detecting LGE. This study aims to explore the association between cardiacspecific biomarkers, CMR myocardial strain, left ventricular (LV) hypertrophy and LGE in HCM patients with preserved ejection fraction (EF) and investigate the predictive values of these indexes for LGE. We recruited 33 healthy volunteers and 86 HCM patients with preserved EF to undergo contrast-enhanced CMR examinations. In total, 48 of 86 HCM patients had the presence of LGE. Serum high-sensitivity cardiac troponin I (hs-cTnI) and N-terminal pro b-type natriuretic peptide (Nt-proBNP) levels were elevated in LGE-positive patients compared with LGE-negative patients. The LGE-positive patients had lower global longitudinal (GLS) and circumferential (GCS) strains than the LGE-negative group and the healthy controls. The LGE% was independently associated with the Nt-proBNP levels, GCS, MWT and beta-blocker treatment. In the receiver operating characteristic curve analysis, the combined parameters of Nt-proBNP≥108 pg/mL and MWT≥17.3 mm had good diagnostic performance for LGE, with a specificity of 81.3% and sensitivity of 70.0%. These data indicate that serum Nt-proBNP is a potential biomarker associated with LGE% and, combined with MWT, were useful for identifying myocardial fibrosis in HCM patients with preserved EF. Additionally, LV GCS may be a more sensitive indicator for reflecting the presence of myocardial fibrosis than GLS.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yumin Li ◽  
Jia Liu ◽  
Yukun Cao ◽  
Xiaoyu Han ◽  
Guozhu Shao ◽  
...  

AbstractMyocardial fibrosis assessed by late gadolinium enhancement (LGE) on cardiovascular magnetic resonance (CMR) is associated with cardiovascular outcomes in hypertrophic cardiomyopathy (HCM) patients, but little is known about the utility of non-invasive markers for detecting LGE. This study aims to explore the association between cardiac-specific biomarkers, CMR myocardial strain, left ventricular (LV) hypertrophy and LGE in HCM patients with preserved ejection fraction (EF) and investigate the predictive values of these indexes for LGE. We recruited 33 healthy volunteers and 86 HCM patients with preserved EF to undergo contrast-enhanced CMR examinations. In total, 48 of 86 HCM patients had the presence of LGE. The LGE-positive patients had significant higher serum high-sensitivity cardiac troponin I (hs-cTnI) and N-terminal pro b-type natriuretic peptide (Nt-proBNP) levels and lower global longitudinal (GLS) and circumferential (GCS) strains than the LGE-negative group. The LGE% was independently associated with the Nt-proBNP levels, GCS, LV end-diastolic maximum wall thickness (MWT) and beta-blocker treatment. In the receiver operating characteristic curve analysis, the combined parameters of Nt-proBNP ≥ 108.00 pg/mL and MWT ≥ 17.30 mm had good diagnostic performance for LGE, with a specificity of 81.25% and sensitivity of 70.00%. These data indicate that serum Nt-proBNP is a potential biomarker associated with LGE% and, combined with MWT, were useful for identifying myocardial fibrosis in HCM patients with preserved EF. Additionally, LV GCS may be a more sensitive indicator for reflecting the presence of myocardial fibrosis than GLS.


2020 ◽  
Author(s):  
Heshui Shi ◽  
Yumin Li ◽  
Jia Liu ◽  
Yukun Cao ◽  
Xiaoyue Zhou ◽  
...  

Abstract Background: Myocardial fibrosis assessed by late gadolinium enhancement (LGE) on cardiovascular magnetic resonance (CMR) has been reported to be significantly correlated with cardiovascular outcomes in hypertrophic cardiomyopathy (HCM) patients. However, data regarding non-invasive markers for detecting myocardial fibrosis were inconsistent and, not systematically evaluated in HCM patients with preserved ejection fraction (EF).Methods: In this study, 86 HCM patients with preserved EF and 33 controls were enrolled. The left ventricular function, end-diastolic maximum wall thickness (MWT), global systolic strains and extent of LGE (% LGE) were assessed. The biochemical indices were also recorded before the CMR examination.Results: Serum high-sensitivity cardiac troponin I (hs-cTnI) and N-terminal pro b-type natriuretic peptide (Nt-proBNP) levels were elevated in LGE-positive patients compared with LGE-negative patients (p < 0.05 for all). The LGE-positive patients had lower global longitudinal (GLS) and circumferential (GCS) strains than the LGE-negative group and the healthy controls (p < 0.05 for all). The LGE% was independently associated with the Nt-proBNP levels (standardized β = 0.627, p < 0.001), beta-blocker treatment (standardized β = -0.372, p = 0.01), MWT (standardized β = 0.481, p = 0.001) and GCS (standardized β = 0.406, p = 0.013). In the receiver operating characteristic (ROC) curve analysis, the combined parameters of Nt-proBNP ≥ 108 pg/mL and MWT ≥ 17.3 mm had good diagnostic performance for LGE, with a specificity of 81.3% and sensitivity of 70.0%.Conclusions: This study suggests that Nt-proBNP may be a potential biomarker associated with LGE% and, combined with MWT, was useful in detecting myocardial fibrosis in HCM patients with preserved EF. Additionally, LV GCS may be a more sensitive indicator for reflecting the presence of myocardial fibrosis than GLS.


2020 ◽  
Vol 41 (Supplement_2) ◽  
Author(s):  
A.N Kaburova ◽  
O.M Drapkina ◽  
S.M Uydin ◽  
M.V Vishnyakova ◽  
M.S Pokrovskaya ◽  
...  

Abstract Introduction Heart failure with preserved ejection fraction (HFpEF) represents a major challenge in modern cardiology. As described previously, in HFpEF comorbidities promote a systemic inflammatory state, leading to diffuse myocardial fibrosis resulting in myocardial stiffening. Gut dysbiosis which is considered as the novel source of chronic systemic inflammation has been actively investigated as the risk factor for the development and aggravation of cardiovascular diseases including heart failure. Cardiac magnetic resonance T1-mapping is a novel tool, which allows noninvasive quantification of the extracellular space and diffuse myocardial fibrosis. Moreover, the extracellular volume (ECV) fraction can be calculated, providing information on the relative expansion of the extracellular matrix, thus being a noninvasive alternative to myocardial biopsy studies. Purpose The research was aimed at investigating the correlation between the left ventricular ECV and gut microbial genera in patients with HFpEF. Methods 42 patients with confirmed HF-pEF (mediana and interquartile range of age 67 [64; 72] years, 47% men, body mass index &lt;35 kg/m2 with no history of myocardial infarction or diabetes mellitus) were enrolled in the study. The patients underwent transthoracic echocardiography with Doppler study, HF-pEF was confirmed according to the recent ESC guidelines (based on E/e' ratio, N-terminal pro-B type natriuretic peptide &gt;125 pg/ml and symptoms of heart failure). The intestinal microbiome was investigated using high-throughput sequencing of bacterial 16S rRNA gene. As the last step of research T1-myocardial mapping with the modified look-locker inversion-recovery protocol (MOLLI) sequence at 1.5 Tesla was performed to assess left ventricular extracellular volume fraction. Results The mean±std in ECV was 31.02±4.4%. The relative abundance (%) of the most prevalent phyla in gut microbiota was 48±22.5 for Firmicutes, 47.4±22.8 for Bacteroidetes and 1.5 [1.5; 2.5] for Proteobacteria. The analysis showed significant negative correlations between ECV and the following bacterial genera: Faecalibacterium (r=−0.35), Blautia (r=−0.43), Lachnoclostridium (r=−0.32). Moreover ECV positively correlated with Holdemania (r=0.4), Victivallis (r=0.38), Dehalobacterium (r=0.38), Enterococcus (r=0.33) and Catabacter (r=0.32). All correlation values with p&lt;0.05. Conclusion We discovered both negative and positive significant correlations between ECV – the non-invasive marker of myocardial fibrosis and several bacterial genera, which may have negative impact on myocardial remodeling in HF-pEF. Funding Acknowledgement Type of funding source: None


Kardiologiia ◽  
2021 ◽  
Vol 61 (8) ◽  
pp. 68-75
Author(s):  
E. K. Serezhina ◽  
A. G. Obrezan

This systematic review is based on 19 studies from Elsevier, PubMed, Embase, and Scopus databases, which were found by the following keywords: LA strain (left atrial strain), STE (speckle tracking echocardiography), HF (heart failure), and HFpEF (heart failure with preserved ejection fraction). The review focuses on results and conclusions of studies on using the 2D echocardiographic evaluation of left atrial (LA) myocardial strain for early diagnosis of HFpEF in routine clinical practice. Analysis of the studies included into this review showed a significant decline of all LA functions in patients with HFpEF. Also, multiple studies have reported associations between decreased indexes of LA strain and old age, atrial fibrillation, left ventricular hypertrophy, left and right ventricular systolic dysfunction, and LV diastolic dysfunction. Thus, the review indicates significant possibilities of using indexes of LA strain in evaluation of early stages of both systolic and diastolic myocardial dysfunction. Notably, LA functional systolic and diastolic indexes are not sufficiently studied despite their growing significance for diagnosis and prognosis of patients with HFpEF. For this reason, in addition to existing models for risk stratification in this disease, including clinical characteristics and/or echocardiographic data, future studies should focus on these parameters. 


Open Heart ◽  
2019 ◽  
Vol 6 (2) ◽  
pp. e001088 ◽  
Author(s):  
Francisco Londono-Hoyos ◽  
Patrick Segers ◽  
Zeba Hashmath ◽  
Garrett Oldland ◽  
Maheshwara Reddy Koppula ◽  
...  

ObjectiveNon-invasive assessment of left ventricular (LV) diastolic and systolic function is important to better understand physiological abnormalities in heart failure (HF). The spatiotemporal pattern of LV blood flow velocities during systole and diastole can be used to estimate intraventricular pressure differences (IVPDs). We aimed to demonstrate the feasibility of an MRI-based method to calculate systolic and diastolic IVPDs in subjects without heart failure (No-HF), and with HF with reduced ejection fraction (HFrEF) and HF with preserved ejection fraction (HFpEF).MethodsWe studied 159 subjects without HF, 47 subjects with HFrEF and 32 subjects with HFpEF. Diastolic and systolic intraventricular flow was measured using two-dimensional in-plane phase-contrast MRI. The Euler equation was solved to compute IVPDs in diastole (mitral base to apex) and systole (apex to LV outflow tract).ResultsSubjects with HFpEF demonstrated a higher magnitude of the early diastolic reversal of IVPDs (−1.30 mm Hg) compared with the No-HF group (−0.78 mm Hg) and the HFrEF group (−0.75 mm Hg; analysis of variance p=0.01). These differences persisted after adjustment for clinical variables, Doppler-echocardiographic parameters of diastolic filling and measures of LV structure (No-HF=−0.72; HFrEF=−0.87; HFpEF=−1.52 mm Hg; p=0.006). No significant differences in systolic IVPDs were found in adjusted models. IVPD parameters demonstrated only weak correlations with standard Doppler-echocardiographic parameters.ConclusionsOur findings suggest distinct patterns of systolic and diastolic IVPDs in HFpEF and HFrEF, implying differences in the nature of diastolic dysfunction between the HF subtypes.


Circulation ◽  
2020 ◽  
Vol 142 (Suppl_3) ◽  
Author(s):  
Soeren Jan Backhaus ◽  
Torben Lange ◽  
Elisabeth George ◽  
Kristian Hellenkamp ◽  
Roman Gertz ◽  
...  

Introduction: Invasive right heart catherization (RHC) using exercise-stress is the reference-standard for the diagnosis of heart failure with preserved ejection fraction (HFpEF) but carries the risk of the procedure. Real-time cardiovascular magnetic resonance (RT-CMR) imaging allows bicycle exercise CMR with unprecedented temporal and spatial resolution and may represent a novel non-invasive alternative. Methods: The HFpEF stress trial (NCT03260621) prospectively included 75 patients with echocardiographic signs of diastolic dysfunction and dyspnoea on exertion (E/E’>8, NYHA≥II) who underwent echocardiography, RHC and RT-CMR at rest and exercise-stress. HFpEF was defined according to pulmonary capillary wedge pressure (PCWP ≥15mmHg at rest or ≥25mmHg during exercise stress). RT-CMR functional assessments included time-volume-curves for total and early (1/3) diastolic left ventricular (LV) filling or left atrial (LA) emptying and LV/LA long axis strain (LAS). Results: HFpEF patients (n=34, mean PCWP rest 13mmHg, stress 27mmHg) had higher E/e’ (12.5 vs 9.15), NT-proBNP (255 vs 75ng/l) and LA volume index (43.8 vs 36.2ml/m 2 ) compared to non-HFpEF patients (n=34, rest 8mmHg, stress 18mmHg, p≤0.001 for all). There were no differences in RT-CMR LV total and early diastolic filling at rest and during exercise-stress (p≥0.164). In contrast, RT-CMR revealed impaired stress LA total (p=0.033) and early (p<0.001) diastolic emptying in HFpEF. LA LAS was the only impaired parameter at rest (p<0.001) and emerged as the best predictor for the presence of HFpEF during exercise-stress testing (AUC rest 0.82 vs stress 0.93, p=0.029). Conclusions: RT-CMR allows highly accurate identification of HFpEF during physiological exercise and may establish itself as a novel non-invasive diagnostic alternative for routine clinical use.


Sign in / Sign up

Export Citation Format

Share Document