scholarly journals Energy-aware and Carbon-efficient VM Placement Optimization in Cloud Datacenters Using Evolutionary Computing Methods

Author(s):  
Tahereh Abbasi-khazaei ◽  
Mohammad Hossein Rezvani

Abstract One of the most important concerns of cloud service providers is balancing renewable and fossil energy consumption. On the other hand, the policy of organizations and governments is to reduce energy consumption and greenhouse gas emissions in cloud data centers. Recently, a lot of research has been conducted to optimize the Virtual Machine (VM) placement on physical machines to minimize energy consumption. Many previous studies have not considered the deadline and scheduling of IoT tasks. Therefore, the previous modelings are mainly not well-suited to the IoT environments where requests are time-constraint. Unfortunately, both the sub-problems of energy consumption minimization and scheduling fall into the category of NP-hard issues. In this study, we propose a multi-objective VM placement to joint minimizing energy costs and scheduling. After presenting a modified memetic algorithm, we compare its performance with baseline methods as well as state-of-the-art ones. The simulation results on the CloudSim platform show that the proposed method can reduce energy costs, carbon footprints, SLA violations, and the total response time of IoT requests.

Author(s):  
Kenga Mosoti Derdus ◽  
Vincent Oteke Omwenga ◽  
Patrick Job Ogao

Cloud computing has gained a lot of interest from both small and big academic and commercial organizations because of its success in delivering service on a pay-as-you-go basis. Moreover, many users (organizations) can share server computing resources, which is made possible by virtualization. However, the amount of energy consumed by cloud data centres is a major concern. One of the major causes of energy wastage is the inefficient utilization of resources. For instance, in IaaS public clouds, users select Virtual Machine (VM) sizes set beforehand by the Cloud Service Providers (CSPs) without the knowledge of the kind of workloads to be executed in the VM. More often, the users overprovision the resources, which go to waste. Additionally, the CSPs do not have control over the types of applications that are executed and thus VM consolidation is performed blindly. There have been efforts to address the problem of energy consumption by efficient resource utilization through VM allocation and migration. However, these techniques lack collection and analysis of active real cloud traces from the IaaS cloud. This paper proposes an architecture for VM consolidation through VM profiling and analysis of VM resource usage and resource usage patterns, and a VM allocation policy. We have implemented our policy on CloudSim Plus cloud simulator and results show that it outperforms Worst Fit, Best Fit and First Fit VM allocation algorithms. Energy consumption is reduced through efficient consolidation that is informed by VM resource consumption.


2018 ◽  
Vol 7 (2.8) ◽  
pp. 550 ◽  
Author(s):  
G Anusha ◽  
P Supraja

Cloud computing is a growing technology now-a-days, which provides various resources to perform complex tasks. These complex tasks can be performed with the help of datacenters. Data centers helps the incoming tasks by providing various resources like CPU, storage, network, bandwidth and memory, which has resulted in the increase of the total number of datacenters in the world. These data centers consume large volume of energy for performing the operations and which leads to high operation costs. Resources are the key cause for the power consumption in data centers along with the air and cooling systems. Energy consumption in data centers is comparative to the resource usage. Excessive amount of energy consumption by datacenters falls out in large power bills. There is a necessity to increase the energy efficiency of such data centers. We have proposed an Energy aware dynamic virtual machine consolidation (EADVMC) model which focuses on pm selection, vm selection, vm placement phases, which results in the reduced energy consumption and the Quality of service (QoS) to a considerable level.


2013 ◽  
Vol 325-326 ◽  
pp. 1730-1733 ◽  
Author(s):  
Si Yuan Jing ◽  
Shahzad Ali ◽  
Kun She

Numerous part of the energy-aware resource provision research for cloud data center just considers how to maximize the resource utilization, i.e. minimize the required servers, without considering the overhead of a virtual machine (abbreviated as a VM) placement change. In this work, we propose a new method to minimize the energy consumption and VM placement change at the same time, moreover we also design a network-flow-theory based approximate algorithm to solve it. The simulation results show that, compared to existing work, the proposed method can slightly decrease the energy consumption but greatly decrease the number of VM placement change


2018 ◽  
Vol 173 ◽  
pp. 03092
Author(s):  
Bo Li ◽  
Yun Wang

Virtual machine placement is the process of selecting the most suitable server in large cloud data centers to deploy newly-created VMs. Traditional load balancing or energy-aware VM placement approaches either allocate VMs to PMs in centralized manner or ignore PM’s cost-capacity ratio to implement energy-aware VM placement. We address these two issues by introducing a distributed VM placement approach. A auction-based VM placement algorithm is devised for help VM to find the most suitable server in large heterogeneous cloud data centers. Our algorithm is evaluated by simulation. Experimental results show two major improvements over the existing approaches for VM placement. First, our algorithm efficiently balances the utilization of multiple types of resource by minimizing the amount of physical servers used. Second, it reduces system cost compared with existing approaches in heterogeneous environment.


Author(s):  
Bhupesh Kumar Dewangan ◽  
Amit Agarwal ◽  
Venkatadri M. ◽  
Ashutosh Pasricha

Cloud computing is a platform where services are provided through the internet either free of cost or rent basis. Many cloud service providers (CSP) offer cloud services on the rental basis. Due to increasing demand for cloud services, the existing infrastructure needs to be scale. However, the scaling comes at the cost of heavy energy consumption due to the inclusion of a number of data centers, and servers. The extraneous power consumption affects the operating costs, which in turn, affects its users. In addition, CO2 emissions affect the environment as well. Moreover, inadequate allocation of resources like servers, data centers, and virtual machines increases operational costs. This may ultimately lead to customer distraction from the cloud service. In all, an optimal usage of the resources is required. This paper proposes to calculate different multi-objective functions to find the optimal solution for resource utilization and their allocation through an improved Antlion (ALO) algorithm. The proposed method simulated in cloudsim environments, and compute energy consumption for different workloads quantity and it increases the performance of different multi-objectives functions to maximize the resource utilization. It compared with existing frameworks and experiment results shows that the proposed framework performs utmost.


Author(s):  
T Gunasekhar ◽  
K Thirupathi Rao ◽  
V Krishna Reddy ◽  
P Sai Kiran ◽  
B Thirumala Rao

The malicious insider can be an employees, user and/or third party business partner. In cloud environment, clients may store sensitive data about their organization in cloud data centers. The cloud service provider should ensure integrity, security, access control and confidentiality about the stored data at cloud data centers. The malicious insiders can perform stealing on sensitive data at cloud storage and at organizations. Most of the organizations ignoring the insider attack because it is harder to detect and mitigate. This is a major emerging problem at the cloud data centers as well as in organizations. In this paper, we proposed a method that ensures security, integrity, access control and confidentiality on sensitive data of cloud clients by employing multi cloud service providers. The organization should encrypt the sensitive data with their security policy and procedures and store the encrypted data in trusted cloud. The keys which are used during encryption process are again encrypted and stored in another cloud area. So that organization contains only keys for keys of encrypted data. The Administrator of organization also does not know what data kept in cloud area and if he accesses the data, easily caught during the auditing. Hence, the only authorized used can access the data and use it and we can mitigate insider attacks by providing restricted privileges.


Electronics ◽  
2019 ◽  
Vol 8 (2) ◽  
pp. 218 ◽  
Author(s):  
Aisha Fatima ◽  
Nadeem Javaid ◽  
Ayesha Anjum Butt ◽  
Tanzeela Sultana ◽  
Waqar Hussain ◽  
...  

Cloud computing offers various services. Numerous cloud data centers are used to provide these services to the users in the whole world. A cloud data center is a house of physical machines (PMs). Millions of virtual machines (VMs) are used to minimize the utilization rate of PMs. There is a chance of unbalanced network due to the rapid growth of Internet services. An intelligent mechanism is required to efficiently balance the network. Multiple techniques are used to solve the aforementioned issues optimally. VM placement is a great challenge for cloud service providers to fulfill the user requirements. In this paper, an enhanced levy based multi-objective gray wolf optimization (LMOGWO) algorithm is proposed to solve the VM placement problem efficiently. An archive is used to store and retrieve true Pareto front. A grid mechanism is used to improve the non-dominated VMs in the archive. A mechanism is also used for the maintenance of an archive. The proposed algorithm mimics the leadership and hunting behavior of gray wolves (GWs) in multi-objective search space. The proposed algorithm was tested on nine well-known bi-objective and tri-objective benchmark functions to verify the compatibility of the work done. LMOGWO was then compared with simple multi-objective gray wolf optimization (MOGWO) and multi-objective particle swarm optimization (MOPSO). Two scenarios were considered for simulations to check the adaptivity of the proposed algorithm. The proposed LMOGWO outperformed MOGWO and MOPSO for University of Florida 1 (UF1), UF5, UF7 and UF8 for Scenario 1. However, MOGWO and MOPSO performed better than LMOGWO for UF2. For Scenario 2, LMOGWO outperformed the other two algorithms for UF5, UF8 and UF9. However, MOGWO performed well for UF2 and UF4. The results of MOPSO were also better than the proposed algorithm for UF4. Moreover, the PM utilization rate (%) was minimized by 30% with LMOGWO, 11% with MOGWO and 10% with MOPSO.


2018 ◽  
Vol 20 (4) ◽  
pp. 430-445 ◽  
Author(s):  
Mohamed Amine Kaaouache ◽  
Sadok Bouamama

Purpose This purpose of this paper is to propose a novel hybrid genetic algorithm based on a virtual machine (VM) placement method to improve energy efficiency in cloud data centers. How to place VMs on physical machines (PMs) to improve resource utilization and reduce energy consumption is one of the major concerns for cloud providers. Over the past few years, many approaches for VM placement (VMP) have been proposed; however, existing VM placement approaches only consider energy consumption by PMs, and do not consider the energy consumption of the communication network of a data center. Design/methodology/approach This paper attempts to solve the energy consumption problem using a VM placement method in cloud data centers. Our approach uses a repairing procedure based on a best-fit decreasing heuristic to resolve violations caused by infeasible solutions that exceed the capacity of the resources during the evolution process. Findings In addition, by reducing the energy consumption time with the proposed technique, the number of VM migrations was reduced compared with existing techniques. Moreover, the communication network caused less service level agreement violations (SLAV). Originality/value The proposed algorithm aims to minimize energy consumption in both PMs and communication networks of data centers. Our hybrid genetic algorithm is scalable because the computation time increases nearly linearly when the number of VMs increases.


2020 ◽  
Vol 21 (2) ◽  
pp. 159-172
Author(s):  
Nithiya Baskaran ◽  
Eswari R

The unbalanced usage of resources in cloud data centers cause an enormous amount of power consumption. The Virtual Machine (VM) consolidation shuts the underutilized hosts and makes the overloaded hosts as normally loaded hosts by selecting appropriate VMs from the hosts and migrates them to other hosts in such a way to reduce the energy consumption and to improve physical resource utilization. Efficient method is needed for VM selection and destination hosts selection (VM placement). In this paper, a CPU-Memory aware VM placement algorithm is proposed for selecting suitable destination host for migration. The VMs are selected using Fuzzy Soft Set (FSS) method VM selection algorithm. The proposed placement algorithm considers both CPU, Memory, and combination of CPU-Memory utilization of VMs on the source host. The proposed method is experimentally compared with several existing selection and placement algorithms and the results show that the proposed consolidation method performs better than existing algorithms in terms of energy efficiency, energy consumption, SLA violation rate, and number of VM migrations.


2021 ◽  
Vol 6 (2) ◽  
pp. 170-182
Author(s):  
Derdus Kenga ◽  
Vincent Omwenga ◽  
Patrick Ogao

The main cause of energy wastage in cloud data centres is the low level of server utilization. Low server utilization is a consequence of allocating more resources than required for running applications. For instance, in Infrastructure as a Service (IaaS) public clouds, cloud service providers (CSPs) deliver computing resources in the form of virtual machines (VMs) templates, which the cloud users have to choose from. More often, inexperienced cloud users tend to choose bigger VMs than their application requirements. To address the problem of inefficient resources utilization, the existing approaches focus on VM allocation and migration, which only leads to physical machine (PM) level optimization. Other approaches use horizontal auto-scaling, which is not a visible solution in the case of IaaS public cloud. In this paper, we propose an approach of customizing user VM’s size to match the resources requirements of their application workloads based on an analysis of real backend traces collected from a VM in a production data centre. In this approach, a VM is given fixed size resources that match applications workload demands and any demand that exceeds the fixed resource allocation is predicted and handled through vertical VM auto-scaling. In this approach, energy consumption by PMs is reduced through efficient resource utilization. Experimental results obtained from a simulation on CloudSim Plus using GWA-T-13 Materna real backend traces shows that data center energy consumption can be reduced via efficient resource utilization


Sign in / Sign up

Export Citation Format

Share Document