scholarly journals Internal dosimetry in F-18 FDG PET examinations based on long time measured organ activities using total-body PET/CT: dose it makes any difference from a short-time measurement?

Author(s):  
Pengcheng Hu ◽  
Xin Lin ◽  
Weihai Zhuo ◽  
Hui Tan ◽  
Tianwu Xie ◽  
...  

Abstract Purpose The 2-meter long total-body PET/CT scanner (uEXPLORER) has been developed recently while its total-body coverage and ultra-high sensitivity provide opportunities for in vivo time-activity curve (TAC) measurement of all investigated organs with high temporal resolution simultaneously. This study aims at quantifying the cumulated activity and patient dose with long-time measured time-activity curves (TACs) of different organs, so that the comparison between estimation of quantifying methods using short-time or long-time TACs could be performed.Methods Organ TACs of 10 healthy volunteers were collected by the newly developed dynamic total-body PET/CT system in 4 periods after the intravenous injection of 2-[F-18]Fluoro-2-deoxy-D-glucose (18F-FDG). The 8-hour TACs of 6 source organs were fitted by using a spline method. Comparing cumulated activity estimated from spline fitted curves, the cumulated activity estimated from multi-exponential curve was also calculated. Exponential curve was fitted with shorter series of data consisting with clinical procedure and previous dosimetry works. An 8-hours dynamic bladder wall dose model considering 2 voiding were demonstrated to illustrate the differences in bladder dose caused by the different measurement durations. Organ absorbed doses were further estimated by using MIRD method and voxel phantoms for effective dose estimations.Results Short-time measurement could bring significant differences in estimated cumulated activity for liver compared with long-time measured spline fitted method while the differences of cumulated activity were 18.38% on average. For myocardium, the estimated cumulated activity difference was statistically neglectable due to the individual variation in metabolism. The average residence time differences of brain, heart, kidney, liver and lungs are 8.38%, 15.13%, 25.02%, 23.94% and 16.50% between spline fitted curve and multi-exponential fitted curve (fitted using the data from 57 minutes to 75 minutes after injection). When considering effective dose, the maximum differences of residence time between long-time measured spline fitted curve and multi-exponential fitted curve (fitted with shorter series of data) was 9.93%. The bladder contributed the most to the effective dose among all the investigated organs with the value of 21.18%. The bladder wall dose calculated using a long-time dynamic model was 13.79% larger than the two-voiding dynamic model, while at least 50.17% smaller than previous study using fixed bladder content volume.Conclusions Multi-organ TACs in-vivo long-time measurement with high temporal resolution by using total-body PET/CT proved that the data of clinical procedure with 20 minutes PET scan at 1 hour after injection could be used for retrospective dosimetry analysis. As the bladder content contributed the most to the effective dose, a long-time dynamic model was recommended for the bladder wall dose estimation.

2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Pengcheng Hu ◽  
Xin Lin ◽  
Weihai Zhuo ◽  
Hui Tan ◽  
Tianwu Xie ◽  
...  

Abstract Purpose A 2-m axial field-of-view, total-body PET/CT scanner (uEXPLORER) has been recently developed to provide total-body coverage and ultra-high sensitivity, which together, enables opportunities for in vivo time-activity curve (TAC) measurement of all investigated organs simultaneously with high temporal resolution. This study aims at quantifying the cumulated activity and patient dose of 2-[F-18]fluoro-2-deoxy-D-glucose (F-18 FDG ) imaging by using delayed time-activity curves (TACs), measured out to 8-h post-injection, for different organs so that the comparison between quantifying approaches using short-time method (up to 75 min post-injection) or long-time method (up to 8 h post-injection) could be performed. Methods Organ TACs of 10 healthy volunteers were collected using total-body PET/CT in 4 periods after the intravenous injection of F-18 FDG. The 8-h post-injection TACs of 6 source organs were fitted using a spline method (based on Origin (version 8.1)). To compare with cumulated activity estimated from spline-fitted curves, the cumulated activity estimated from multi-exponential curve was also calculated. Exponential curve was fitted with shorter series of data consistent with clinical procedure and previous dosimetry works. An 8-h dynamic bladder wall dose model considering 2 voiding were employed to illustrate the differences in bladder wall dose caused by the different measurement durations. Organ absorbed doses were further estimated using Medical Internal Radiation Dose (MIRD) method and voxel phantoms. Results A short-time measurement could lead to significant bias in estimated cumulated activity for liver compared with long-time-measured spline fitted method, and the differences of cumulated activity were 18.38% on average. For the myocardium, the estimated cumulated activity difference was not statistically significant due to large variation in metabolism among individuals. The average residence time differences of brain, heart, kidney, liver, and lungs were 8.38%, 15.13%, 25.02%, 23.94%, and 16.50% between short-time and long-time methods. Regarding effective dose, the maximum differences of residence time between long-time-measured spline fitted curve and short-time-measured multi-exponential fitted curve was 9.93%. When using spline method, the bladder revealed the most difference in the effective dose among all the investigated organs with a bias up to 21.18%. The bladder wall dose calculated using a long-time dynamic model was 13.79% larger than the two-voiding dynamic model, and at least 50.17% lower than previous studies based on fixed bladder content volume. Conclusions Long-time measurement of multi-organ TACs with high temporal resolution enabled by a total-body PET/CT demonstrated that the clinical procedure with 20 min PET scan at 1 h after injection could be used for retrospective dosimetry analysis in most organs. As the bladder content contributed the most to the effective dose, a long-time dynamic model was recommended for the bladder wall dose estimation.


Author(s):  
Juyoung Jin ◽  
Jaesool Shim ◽  
Jinseok Kim

The diffusion coefficients of ions are measured in a microchip filled with a cationic charged 3D hydrogel in order to study the effect of cationic charged 3D hydrogel on the diffusivity of ions. In this study, poly-diallyl-dimethyl-ammoniumchloride (poly-DADMAC) is used to produce a 3D hydrogel. Four different fluorophores are used in the 3D hydrogel rhodamine 6G, rhodamine-BSA, fluorescein isothio-cyanate (FITC) and FITC-BSA. The rhodamine 6G and rhodamine-BSA are positively charged (cations), while fluorescein isothio-cyanate (FITC) and FITC-BSA are negatively charged (anions). Two widely used techniques which are short time diffusivity measurement technique and long time diffusivity measurement techniques are used to measure the diffusion coefficients. For the short time measurement, Fluorescence recovery after photo-bleaching (FRAP) is used by a 3D confocal microscope. For the long time measurement, fluorescence images are taken for 11 days to observe a pure diffusivity without any convective movement. As a result, the diffusivity of the cations was found to be lower than that of the anions in the cationic charged hydrogel.


Author(s):  
Yongjiang Li ◽  
Wenbiao Zhang ◽  
Hu Zhang ◽  
Chao Zhou ◽  
Liangshun Xiong ◽  
...  

Author(s):  
K Ebrahimnejad Gorji ◽  
R Abedi Firouzjah ◽  
F Khanzadeh ◽  
N Abdi-Goushbolagh ◽  
A Banaei ◽  
...  

Introduction: In this study, organ radiation doses were calculated for the renal agent 99mTc-DTPA in children. Bio-kinetic energy of 99mTc-DTPA was evaluated by scintigraphy and estimates for absorbed radiation dose were provided using standard medical internal radiation dosimetry (MIRD) techniques.Materials and Methods: In this applied research, fourteen children patients (6 males and 8 females) were imaged using a series of planar and SPECT images after injecting with technetium-99m diethylenetriaminepentaacetic acid (99mTc-DTPA). A hybrid planar/SPECT method was used to plot time-activity curves to obtain the residence time of the source organs and also MIRDOSE software was used to calculate the absorbed dose of every organ. P-values were calculated using t-tests in order to make a comparison between the adsorbed doses of male and female groups.Results: Mean absorbed doses (µGy/MBq) for urinary bladder wall, kidneys, gonads, liver and adrenals were 213.5±47.8, 12.97±6.23, 12.0±2.5, 4.29±1.47, and 3.31±0.96, respectively. Furthermore, the mean effective dose was 17.5±3.7 µSv/MBq. There was not any significant difference in the mean absorbed dose of the two groups.Conclusion: Bladder cumulated activity was the most contribution in the effective dose of patients scanned with 99mTc-DTPA. Using a hybrid planar/SPECT method can cause an increase in accumulated activity accuracy for the region of interest. Moreover, patient-specified internal dosimetry is recommended.


2008 ◽  
Vol 47 (05) ◽  
pp. 220-224 ◽  
Author(s):  
E. Gouverneur ◽  
A. Schaefer ◽  
J. Raedle ◽  
M. Menges ◽  
C.-M. Kirsch ◽  
...  

SummaryRecently, p-[123I]iodo-L-phenylalanine (IPA) was clinically validated for brain tumour imaging. Preclinical studies demonstrated uptake of IPA into pancreatic adenocarcinoma suggesting its diagnostic application in patients with pancreatic tumours. The aim was to study the tumour uptake of IPA in patients with pancreatic adenocarcinoma and to analyse its biodistribution and dosimetry to assess the radiation dose resulting from its diagnostic use. Patients, methods: Seven patients with pancreatic adenocarcinoma underwent whole-body scintigraphies and SPECT up to 24 h after administration of 250 MBq of IPA. Tumour uptake of IPA was assessed visually. Time activity curves and the corresponding residence times were determined for whole-body, kidneys, liver, spleen, lung, heart content, brain, and testes. Mean absorbed doses for various organs and the effective dose were assessed based on the MIRD formalism using OLINDA/EXM. Results: IPA exhibited no accumulation in proven manifestations of pancreatic adenocarcinomas. IPA was exclusively eliminated by the urine and showed a delayed clearance from blood. Residence times were 0.26 ± 0.09 h for kidneys, 0.38 ± 0.19 h for liver, 0.15 ± 0.07 h for spleen, 0.51 ± 0.20 h for lungs, 0.22 ± 0.07 h for heart content, 0.11 ± 0.05 h for brain, 0.014 ± 0.005 h for testes and 6.4 ± 2.2 h for the remainder. The highest absorbed doses were determined in the urinary bladder wall and in the kidneys. According to the ICRP 60 the effective dose resulting from 250 MBq IPA was 3.6 ± 0.7 mSv. Conclusion: Para-[123I]iodo-L-phenylalanine can be used in diagnostic nuclear medicine with acceptable radiation doses. Besides its proven validity for brain tumour imaging, IPA does not appear to be suitable as tracer for pancreatic cancer.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Christopher Cawthorne ◽  
Paul Maguire ◽  
Joel Mercier ◽  
David Sciberras ◽  
Kim Serdons ◽  
...  

Abstract Rationale [11C]-UCB-J is an emerging tool for the noninvasive measurement of synaptic vesicle density in vivo. Here, we report human biodistribution and dosimetry estimates derived from sequential whole-body PET using two versions of the OLINDA dosimetry program. Methods Sequential whole-body PET scans were performed in 3 healthy subjects for 2 h after injection of 254 ± 77 MBq [11C]-UCB-J. Volumes of interest were drawn over relevant source organs to generate time-activity curves and calculate time-integrated activity coefficients, with effective dose coefficients calculated using OLINDA 2.1 and compared to values derived from OLINDA 1.1 and those recently reported in the literature. Results [11C]-UCB-J administration was safe and showed mixed renal and hepatobiliary clearance, with largest organ absorbed dose coefficients for the urinary bladder wall and small intestine (21.7 and 23.5 μGy/MBq, respectively). The average (±SD) effective dose coefficient was 5.4 ± 0.7 and 5.1 ± 0.8 μSv/MBq for OLINDA versions 1.1 and 2.1 respectively. Doses were lower than previously reported in the literature using either software version. Conclusions A single IV administration of 370 MBq [11C]-UCB-J corresponds to an effective dose of less than 2.0 mSv, enabling multiple PET examinations to be carried out in the same subject. Trial registration EudraCT number: 2016-001190-32. Registered 16 March 2016, no URL available for phase 1 trials.


1923 ◽  
Vol 128 (4) ◽  
pp. 264-264
Author(s):  
J. W. Harsch
Keyword(s):  

Author(s):  
Kenji Ikeda ◽  
Yusuke Kawamura ◽  
Masahiro Kobayashi ◽  
Taito Fukushima ◽  
Yushi Sorin ◽  
...  

Background: Although DC Bead has been useful in treatment of multiple and large hepatocellular carcinoma, loading time of doxorubicin into the DC Bead takes a long time of 30-120 minutes. Epirubicin is also used as an antitumor agent together with DC Bead, but its loading efficiency was not sufficiently elucidated. Methods: To shorten loading time of epirubicin into DC Bead (100-300µm, 300-500µm, 500-700µm), we examined the following three methods after mixing the drug: (a) let stand in room temperature, (b) agitated for 30 seconds with Vortex mixer, and (c) sonicated for 30 seconds with ultrasonic cleaner. After loading of epirubicin by each method, supernatant concentration for epirubicin was assayed at 5, 10, 30, 60, and 120 minutes. Results: Epirubicin loading rates for small bead (100-300µm) at 5 minutes were 82.9 % in group a, 93.8% in group b, and 79.9 % in group c. Similarly, medium bead (300-500µm), 40.1% in group a, 65.7% in group b and 45.5% in group c, respectively. In large-sized bead (500-700µm), loaded rates of epirubicin were 38.8% in group a, 59.0% in group b and 48.0% in group c. Agitation of mixture of epirubicin and DC Bead with Vortex mixer significantly shortened the loading time, but sonication did not affect the time required. Microscopic examination did not lead to any morphological change of microspheres in all the methods. Conclusions: Short time of agitation with Vortex mixer reduced the necessary time for loading of epirubicin in every standard of DC Bead.


Author(s):  
Yasunobu Iwai ◽  
Koichi Shinozaki ◽  
Daiki Tanaka

Abstract Compared with space parts, consumer parts are highly functional, low cost, compact and lightweight. Therefore, their increased usage in space applications is expected. Prior testing and evaluation on space applicability are necessary because consumer parts do not have quality guarantees for space application [1]. However, in the conventional reliability evaluation method, the test takes a long time, and the problem is that the robustness of the target sample can’t be evaluated in a short time. In this report, we apply to the latest TSOP PEM (Thin Small Outline Package Plastic Encapsulated Microcircuit) an evaluation method that combines preconditioning and HALT (Highly Accelerated Limit Test), which is a test method that causes failures in a short time under very severe environmental conditions. We show that this method can evaluate the robustness of TSOP PEMs including solder connections in a short time. In addition, the validity of this evaluation method for TSOP PEM is shown by comparing with the evaluation results of thermal shock test and life test, which are conventional reliability evaluation methods.


1984 ◽  
Vol 16 (3-4) ◽  
pp. 623-633
Author(s):  
M Loxham ◽  
F Weststrate

It is generally agreed that both the landfill option, or the civil techniques option for the final disposal of contaminated harbour sludge involves the isolation of the sludge from the environment. For short time scales, engineered barriers such as a bentonite screen, plastic sheets, pumping strategies etc. can be used. However for long time scales the effectiveness of such measures cannot be counted upon. It is thus necessary to be able to predict the long term environmenttal spread of contaminants from a mature landfill. A model is presented that considers diffusion and adsorption in the landfill site and convection and adsorption in the underlaying aquifer. From a parameter analysis starting form practical values it is shown that the adsorption behaviour and the molecular diffusion coefficient of the sludge, are the key parameters involved in the near field. The dilution effects of the far field migration patterns are also illustrated.


Sign in / Sign up

Export Citation Format

Share Document