scholarly journals Analysis of Biomolecules in Cochineal Dyed Archaeological Textiles by Surface-Enhanced Raman Spectroscopy.

Author(s):  
Freddy Celis ◽  
Camilo Segura ◽  
Juan Gómez-Jeria ◽  
Marcelo Campos-Vallette ◽  
Santiago Sanchez-Cortes

Abstract SERS spectroscopy is successfully employed in this work to reveal different components integrating the cochineal colorant employed for dying archaeological textile samples from the Arica region in North Chile. This analysis was done by in-situ experiments that does not imply the material (colorant and biomolecules) extraction. The spectroscopic analysis of the archaeological textiles by SERS reveals the presence of bands attributed to carminic acid and nucleobases, mainly adenine and guanine. The identification of these biomolecules was also verified in raw cochineal extract and in cochineal dyed replica wool fibers fabricated by us following ancient receipts. The effect of Al on the complexation of carminic acid and other biomolecules was also tested in order to understand the changes induced by the metal interaction on the colorant structure. This study revealed that Al can also complex biomolecules existing in the cochineal extract. In particular, guanine residue seems to interact strongly with the metal, since SERS bands of this residue are enhanced. Furthermore, a theoretical analysis on the interaction of carminic acid and a silver surface was also performed in order to better understand the interaction mechanism between carminic acid and a metal surface that leads to the final SERS spectrum. The results of the present work will be very useful in the identification of different molecules and metal complexes that may be forming part of the cochineal colorant found in archaeological materials.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
F. Celis ◽  
C. Segura ◽  
J. S. Gómez-Jeria ◽  
M. Campos-Vallette ◽  
S. Sanchez-Cortes

AbstractSERS spectroscopy is successfully employed in this work to reveal different components integrating the cochineal colorant employed for dying archaeological textile samples from the Arica Region in North Chile. This analysis was done by in-situ experiments that does not imply the material (colorant and biomolecules) extraction. The spectroscopic analysis of the archaeological textiles by SERS reveals the presence of bands attributed to carminic acid and nucleobases, mainly adenine and guanine. The identification of these biomolecules was also verified in raw cochineal extract and in cochineal dyed replica wool fibers fabricated by us following ancient receipts. The effect of Al on the complexation of carminic acid and other biomolecules was also tested in order to understand the changes induced by the metal interaction on the colorant structure. This study revealed that Al can also complex biomolecules existing in the cochineal extract. In particular, guanine residue seems to interact strongly with the metal, since SERS bands of this residue are enhanced. Furthermore, a theoretical analysis on the interaction of carminic acid and a silver surface was also performed in order to better understand the interaction mechanism between carminic acid and a metal surface that leads to the final SERS spectrum. The results of the present work will be very useful in the identification of different molecules and metal complexes that may be forming part of the cochineal colorant found in archaeological materials.


Nanophotonics ◽  
2018 ◽  
Vol 7 (10) ◽  
pp. 1651-1662 ◽  
Author(s):  
Henan Zhao ◽  
Wen Zhang ◽  
Zhiming Liu ◽  
Deqiu Huang ◽  
Wolun Zhang ◽  
...  

AbstractAs one of the prospective two-dimensional nanomaterials, black phosphorus (BP), which has excellent physical and chemical properties, has witnessed quick development in theranostic applications. The more recent advances in combining BP nanosheet (NS) with nanoparticles exhibit new opportunities to develop multifunctional nanocomposites. However, more effort should be devoted to elucidate the nanomaterial-cell interaction mechanism before the bio-applications of BP-nanoparticle hybrids. Herein, the intracellular behaviors of BP-gold nanoparticles (BP-Au NSs) are first investigated using the surface-enhanced Raman scattering (SERS) technique. The presence of Au nanoparticles on the surface of a BP sheet allows nanohybrids with excellent SERS activity to enhance the intrinsic Raman signals of cellular components located around the NSs. Data from an endocytosis inhibitor blocking assay reveal that the nanohybrids are mainly taken up by macropinocytosis and caveolae-dependent endocytosis, which are energy-dependent processes. Associated with colocalization experiments, nanohybrids are found to internalize into lysosomes and the endoplasmic reticulum. Moreover, the SERS difference spectrum is extracted after Raman-fluorescence colocalization statistical analysis to distinguish the molecular structural differences in the biochemical components of the two organelles. These findings supply a definite cellular mechanistic understanding of the nano-biointeractions of nanocomposites in cancer cells, which may be of great importance to the biomedical applications of nanotechnology in the future.


2007 ◽  
Vol 61 (9) ◽  
pp. 994-1000 ◽  
Author(s):  
Alyson V. Whitney ◽  
Francesca Casadio ◽  
Richard P. Van Duyne

Silver film over nanospheres (AgFONs) were successfully employed as surface-enhanced Raman spectroscopy (SERS) substrates to characterize several artists' red dyes including: alizarin, purpurin, carminic acid, cochineal, and lac dye. Spectra were collected on sample volumes (1 × 10−6 M or 15 ng/μL) similar to those that would be found in a museum setting and were found to be higher in resolution and consistency than those collected on silver island films (AgIFs). In fact, to the best of the authors' knowledge, this work presents the highest resolution spectrum of the artists' material cochineal to date. In order to determine an optimized SERS system for dye identification, experiments were conducted in which laser excitation wavelengths were matched with correlating AgFON localized surface plasmon resonance (LSPR) maxima. Enhancements of approximately two orders of magnitude were seen when resonance SERS conditions were met in comparison to non-resonance SERS conditions. Finally, because most samples collected in a museum contain multiple dyestuffs, AgFONs were employed to simultaneously identify individual dyes within several dye mixtures. These results indicate that AgFONs have great potential to be used to identify not only real artwork samples containing a single dye but also samples containing dyes mixtures.


2019 ◽  
Vol 2019 ◽  
pp. 1-12
Author(s):  
Yasmin Roye ◽  
Uche Udeochu ◽  
Maraizu Ukaegbu ◽  
Jonathan Onuegbu

Spectroelectrochemical techniques were used to probe the interaction of adenine with pyridoxine at pH 7.0. Analysis of UV-visible absorption of the adenine-pyridoxine complex at 260 nm using the Lineweaver–Burk double reciprocal plot produced a linear graph indicating a 1 : 1 mode of interaction between the compounds and a binding constant of 29.1. Change in the background current and broadening of adenine and pyridoxine cyclic voltammetry (CV) oxidation peaks at 1.0 V and 0.8 V, respectively, compared to the CV of the individual compounds is indicative of an interaction. The Raman shift of the coupled –C(11)H2-OH bending and in-plane N(7)-H mode at 1235 cm−1 to 1215 cm−1 of pyridoxine and the shift to the lower wavenumber of the adenine –N(10)H2 rocking band from 942 to 906 cm−1 confirm that the adenine exocyclic amino group and its purine nitrogen atom N(7) interacts with pyridoxine O(12) via the formation of hydrogen bonds. Strong enhancement of surface-enhanced Raman spectroscopy (SERS) bands pertaining to adenine and the bathochromic shift of the normal Raman band due to the adenine ring breathing mode observed at 722 cm−1 in the spectrum of adenine, to 732 cm−1 in the SERS spectrum of aqueous adenine-pyridoxine indicates that the complex adsorbs onto the Ag nanoparticle surface with the adenine portion possessing a perpendicular orientation.


2001 ◽  
Vol 32 (2) ◽  
pp. 143-145 ◽  
Author(s):  
M. C. Alvarez-Ros ◽  
S. Sánchez-Cortés ◽  
O. Francioso ◽  
J. V. García-Ramos

1992 ◽  
Vol 289 ◽  
Author(s):  
Michael Bradley ◽  
John Krech ◽  
Shlomo Efrima

AbstractHigh pressure surface enhanced Raman (SERS) spectra are reported for a highly dense silver colloidal suspension, termed a MEtal Liquid-Like Film or MELLF. Comparison is made with the SERS spectrum of a dilute organosol. Raman signals due to adsorbed molecules and the solvent dichloromethane reveal appreciable frequency shifts as the colloidal environment is influenced by temperature, pressure, and packing. The C-Cl stretch of neat dichloromethane near 705 cm−1 shifts 1.7 cm −1 blue in a MELLF. Raman signals due to the adsorbed anisic acid in MELLFs blue shift about 2 cm −1 as 4 kilobars of pressure are applied; the solvent peaks shift blue only about 1 cm −1. Temperature influences the MELLF in two ways: desorption of anisic acid and formation of agglomerated particles.


1994 ◽  
Vol 48 (10) ◽  
pp. 1193-1195 ◽  
Author(s):  
E. Roth ◽  
W. Kiefer

The use of surface-enhanced Raman scattering (SERS) as a detection method in gas chromatography (GC) was investigated by two different approaches; GC eluates were trapped either in liquid silver sol or on solid thin-layer chromatography (TLC) plates, previously coated with silver colloidal solution. Subsequently, the trapped analytes were monitored by their SERS spectrum. Pyridine was successfully used as probe molecule for both interfaces. The extension of this static system for application in on-line detection of GC eluates is discussed.


Sign in / Sign up

Export Citation Format

Share Document