scholarly journals Cistanche Tubulosa Phenylethanoid Glycosides Induce Apoptosis of Hepatocellular Carcinoma Cells by Mitochondria-Dependent and MAPK Pathways and Enhance Antitumor Effect Through Combination With Cisplatin

Author(s):  
Pengfei Yuan ◽  
Changshuang Fu ◽  
Yi Yang ◽  
Aipire Adila ◽  
Fangfang Zhou ◽  
...  

Abstract BackgroundPrevious studies have been demonstrated that Cistanche tubulosa phenylethanoid glycosides (CTPG) exhibit antitumor effects on a variety of tumor cells. However, the antitumor effects of CTPG on HepG2 and BEL-7404 hepatocellular carcinoma (HCC) cells are still elusive.ResultsOur study showed that CTPG significantly inhibited the growth of HepG2 and BEL-7404 cells through the induction of cell cycle arrest and apoptosis, which was associated with the activation of MAPK pathways characterized by the up-regulated phosphorylation of p38, JNK, and ERK1/2 and mitochondria-dependent pathway characterized by the reduction of mitochondrial membrane potential. The release of cytochrome c and the cleavage of caspase-3, -7, -9 and PARP were subsequently increased by CTPG treatment. Moreover, CTPG significantly suppressed the migration of HepG2 through reducing the levels of matrix metalloproteinase-2 and vascular endothelial growth factor. Interestingly, CTPG not only enhanced the proliferation of splenocytes but also reduced the apoptosis of splenocytes induced by cisplatin. In H22 tumor mouse model, CTPG combined with cisplatin further inhibited the growth of H22 cells and reduced the side effects of cisplatin.ConclusionTaken together, CTPG inhibited the growth of HCC through direct antitumor effect and indirect immunoenhancement effect, improved the antitumor efficacy of cisplatin.

2021 ◽  
Vol 20 ◽  
pp. 153473542110130
Author(s):  
Pengfei Yuan ◽  
Changshuang Fu ◽  
Yi Yang ◽  
Aipire Adila ◽  
Fangfang Zhou ◽  
...  

Cistanche tubulosa is a type of Chinese herbal medicine and exerts various biological functions. Previous studies have been demonstrated that Cistanche tubulosa phenylethanoid glycosides (CTPG) exhibit antitumor effects on a variety of tumor cells. However, the antitumor effects of CTPG on HepG2 and BEL-7404 hepatocellular carcinoma (HCC) cells are still elusive. Our study showed that CTPG significantly inhibited the growth of HepG2 and BEL-7404 cells through the induction of cell cycle arrest and apoptosis, which was associated with the activation of MAPK pathways characterized by the up-regulated phosphorylation of p38, JNK, and ERK1/2 and mitochondria-dependent pathway characterized by the reduction of mitochondrial membrane potential. The release of cytochrome c and the cleavage of caspase-3, -7, -9, and PARP were subsequently increased by CTPG treatment. Moreover, CTPG significantly suppressed the migration of HepG2 through reducing the levels of matrix metalloproteinase-2 and vascular endothelial growth factor. Interestingly, CTPG not only enhanced the proliferation of splenocytes but also reduced the apoptosis of splenocytes induced by cisplatin. In H22 tumor mouse model, CTPG combined with cisplatin further inhibited the growth of H22 cells and reduced the side effects of cisplatin. Taken together, CTPG inhibited the growth of HCC through direct antitumor effect and indirect immunoenhancement effect, and improved the antitumor efficacy of cisplatin.


2020 ◽  
Vol 39 (11) ◽  
pp. 1528-1544 ◽  
Author(s):  
HE Abo Mansour ◽  
MM El-Batsh ◽  
NS Badawy ◽  
ET Mehanna ◽  
NM Mesbah ◽  
...  

This study aimed to investigate the potential role of co-treatment with doxorubicin (DOX) and verapamil (VRP) nanoparticles in experimentally induced hepatocellular carcinoma in mice and to investigate the possible mechanisms behind the potential favorable effect of the co-treatment. DOX and VRP were loaded into chitosan nanoparticles (CHNPs), and cytotoxicity of loaded and unloaded drugs against HepG2 cells was evaluated. Male albino mice were divided into eight groups ( n = 15): (1) normal control, (2) diethylnitrosamine, (3) CHNPs, (4) free DOX, (5) CHNPs DOX, (6) free VRP, (7) CHNPs VRP, and (8) CHNPs DOX + CHNPs VRP. Either VRP or DOX loaded into CHNPs showed stronger growth inhibition of HepG2 cells than their free forms. DOX or VRP nanoparticles displayed pronounced anticancer activity in vivo through the decline of vascular endothelial growth factor and B cell lymphoma-2 contents in liver tissues, upregulation of antioxidant enzymes, and downregulation of multidrug resistance 1. Moreover, reduced cardiotoxicity was evident from decreased level of tumor necrosis factor-α and malondialdehyde in heart tissues coupled with decreased serum activity of creatine kinase-myocardial band and lactate dehydrogenase. Co-treatment with CHNPs DOX and CHNPs VRP showed superior results versus other treatments. Liver sections from the co-treatment group revealed the absence of necrosis, enhanced apoptosis, and nearly normal hepatic lobule architecture. Co-treatment with CHNPs DOX and CHNPs VRP revealed enhanced anticancer activity and decreased cardiotoxicity versus the corresponding free forms.


2020 ◽  
Vol 14 (1) ◽  
pp. 63-69 ◽  
Author(s):  
Naomi Suzuki ◽  
Kazuto Tajiri ◽  
Yuka Futsukaichi ◽  
Shinichi Tanaka ◽  
Aiko Murayama ◽  
...  

Lenvatinib is a first-line standard treatment for advanced hepatocellular carcinoma (HCC) with better anti-tumor effects than sorafenib, as shown by greater inhibition of the kinases of fibroblast growth factor receptor and vascular endothelial growth factor (VEGF) receptor. This report describes a patient with advanced HCC who experienced perforation of the small intestine 1 month after starting the treatment with lenvatinib. This patient likely had partial necrosis of a metastasis to the small intestine before starting lenvatinib treatment, with subsequent ischemic changes leading to perforation of the small intestine. Although metastasis of HCC to the small intestine is rare, patients with these metastases should be regarded as being at risk for perforation during lenvatinib treatment.


Sign in / Sign up

Export Citation Format

Share Document