scholarly journals Annotations of Recurrent Structural Variant Events in Pan-cancer Whole Genome Data for Precision Medicine

Author(s):  
Takahiko Koyama ◽  
Takanori Hasegawa ◽  
Rika Kasajima ◽  
Eigo Shimizu ◽  
Reitaro Tokumasu ◽  
...  

Abstract In personalized cancer genomic medicine, characterizing a patient’s molecular profile based on comprehensive information is important for maximizing treatment benefits. However, current cancer genome analysis is centered on single nucleotide variation (SNV), gene expression, and copy number variation (CNV) but places little emphasis on structural variations (SV) beside fusions. To date, investigation of SVs has been limited because SV analysis entails a cumbersome annotation process. This study describes the design, development, and implementation of an annotation tool for SV, termed SVAnnotator. Detailed annotation was performed on the results of SV detection of 2,781 whole genome samples from the ICGC/TCGA PanCancer Analysis of Whole Genomes (PCAWG) with identifications of fusion, exon skipping, gene disruption, and tandem duplication SVs. These annotations of SVs will facilitate understanding of molecular events and further enhance utilities of precision medicine in stratifications, pathogenicity assessments and drug responses. Frequent novel SV events in MACROD2, FHIT, WWOX and CCSER1 were observed across many cancers. Importantly, SV events were frequently identified in well-established tumor suppressor genes including RB1, NF1, PTEN and TP53. As such, it is plausible that potential therapeutic opportunities are overlooked when SV analysis is not appropriately performed. Given the frequency of SVs detected in our study, SVanalysis with detailed annotation should be a routine part of comprehensive precision medicine analysis, and further studies are warranted to enhance clinical benefits as well as our understanding of uncharacterized SV events.

Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 5512-5512
Author(s):  
Yasuito Nannya ◽  
Yoshida Kenichi ◽  
Keisuke Kataoka ◽  
Yasunobu Nagata ◽  
Tetsuichi Yoshizato ◽  
...  

Abstract Background Myelodysplastic syndromes (MDS) are a heterogeneous group of myeloid malignancies characterized by refractory cytopenias with marrow dysplasia, which frequently progress to acute myeloid leukemia (AML). Although poorly understood in the previous era, the molecular events that underlie the pathogenesis of MDS have been intensively studied using advanced genomics in the past decade and are now fully catalogued into an array of well-defined functional pathways. However, mostly obtained through exome/targeted-capture sequencing, our knowledge about these molecular events is largely confined to those of single nucleotide variations (SNVs) and short indels, as well as arm-level copy number lesions, mostly within the coding sequences. Alterations in the non-coding regions, particularly a diversity of structural variations, in MDS genomes remain to be investigated in most part, even though the relevance of such lesions has recently been unequivocally demonstrated for other cancer types through large-scale whole genome sequencing (WGS) studies. Unfortunately, however, only a small number of MDS samples have been fully analyzes and inspected for genetic alterations using WGS. Patients and Methods In the present study, we performed an integrated, unbiased molecular study of 60 MDS cases, using whole genome sequencing (WGS) in combination with exome and transcriptome sequencing as well as methylome analysis. Paired tumor/germline DNA were obtained from patients' bone marrow and buccal smear samples. Sequencing data were analyzed using novel in-house pipelines, which were tuned to optimize detection of complex structural variations (SVs) and abnormalities in non-coding sequences. For some patients, multiple longitudinal materials were obtained along with their clinical course. Results WGS identified SNVs across the entire genome with a mean of 5.7/Mb/genome with a clear predominance of age-related C to T transitions, followed by other signatures. The spectrum of major targets of somatic mutations successfully recapitulated the previously reported one in MDS, including those involving splicing factors (SRSF2, SF3B1, U2AF1, and ZRSR2), epigenetic regulators (DNMT3A, ASXL1, TET2, BCOR, and EZH2), transcription factors (RUNX1, ETV6, and CUX1), signal transducing molecules (NRAS, KRAS, FLT3, PTPN11, CBL), and other critical molecules (TP53, NPM1, and STAG2). Moreover, other somatic variants within the coding regions were also identified that had already been reported in other human cancers but not in MDS, such as NCOR2X, MUC6, and TIAM2. The analysis of SVs unexpectedly revealed the complexity of MDS genomes. Most of the MDS genomes analyzed had a heavy burden of SVs including tandem duplications, deletions, translocations, and inversions, with a mean of 7.2/genome, which was far more than expected from conventional cytogenetics and array-based karyotyping. Complex rearrangements were common, frequently converging into particular chromosomes, suggesting multiple genetic events at a single genetic insult. Known targets of SNVs and indels were often affected by SVs, which largely escaped from conventional exome and targeted-capture sequencing, including RUNX1, TET2, FHITand other genes, suggesting that conventional platforms may substantially underestimate the frequency of alterations for some genes. Concomitant transcriptome analysis allowed to correlated abnormal splicing with somatic intronic events otherwise undetectable. Furthermore, comprehensive analysis of genomic aberrations in longitudinal samples enabled us to delineate the clonal architecture of the cellular population in MDS and their dynamics during the AML progression or clonal changes caused by AZA treatment. Conclusions Integrated molecular analysis using WGS and other platforms revealed the complexity of MDS genomes previously unexpected and reveal novel genetic alterations. Our results should help to extend our knowledge about the genomic landscape of MDS and provide novel insights into the molecular pathogenesis and clonal dynamics of MDS. Disclosures Kataoka: Kyowa Hakko Kirin: Honoraria; Boehringer Ingelheim: Honoraria; Yakult: Honoraria. Naoe:Pfizer Inc.: Research Funding; CMIC Co., Ltd.: Research Funding; Kyowa-Hakko Kirin Co.,Ltd.: Honoraria, Patents & Royalties, Research Funding; Otsuka Pharmaceutical Co.,Ltd.: Honoraria, Research Funding; Nippon Boehringer Ingelheim Co., Ltd.: Honoraria, Research Funding; Amgen Astellas BioPharma K.K.: Honoraria; TOYAMA CHEMICAL CO.,LTD.: Research Funding; Chugai Pharmaceutical Co.,LTD.: Honoraria, Patents & Royalties; Celgene K.K.: Honoraria, Research Funding; Sumitomo Dainippon Pharma Co.,Ltd.: Honoraria, Research Funding; Fujifilm Corporation: Honoraria, Patents & Royalties, Research Funding; Bristol-Myers Squibb: Honoraria; Astellas Pharma Inc.: Research Funding. Kiyoi:Celgene Corporation: Consultancy; MSD K.K.: Research Funding; Mochida Pharmaceutical Co., Ltd.: Research Funding; Nippon Boehringer Ingelheim Co., Ltd.: Research Funding; Kyowa-Hakko Kirin Co.LTD.: Research Funding; Fujifilm Corporation: Patents & Royalties, Research Funding; JCR Pharmaceutlcals Co.,Ltd.: Research Funding; Alexion Pharmaceuticals: Research Funding; Yakult Honsha Co.,Ltd.: Research Funding; Eisai Co., Ltd.: Research Funding; Chugai Pharmaceutical Co. LTD.: Research Funding; Toyama Chemikal Co.,Ltd.: Research Funding; Astellas Pharma Inc.: Consultancy, Research Funding; Phizer Japan Inc.: Research Funding; Novartis Pharma K.K.: Research Funding; Nippon Shinyaku Co., Ltd.: Research Funding; Takeda Pharmaceutical Co., Ltd.: Research Funding; Sumitomo Dainippon Pharma Co., Ltd.: Research Funding; Zenyaku Kogyo Co.LTD.: Research Funding; AlexionpharmaLLC.: Research Funding. Ogawa:Kan research institute: Consultancy, Research Funding; Takeda Pharmaceuticals: Consultancy, Research Funding; Sumitomo Dainippon Pharma: Research Funding.


2021 ◽  
Vol 11 (7) ◽  
pp. 647
Author(s):  
Nina R. Sperber ◽  
Olivia M. Dong ◽  
Megan C. Roberts ◽  
Paul Dexter ◽  
Amanda R. Elsey ◽  
...  

The complexity of genomic medicine can be streamlined by implementing some form of clinical decision support (CDS) to guide clinicians in how to use and interpret personalized data; however, it is not yet clear which strategies are best suited for this purpose. In this study, we used implementation science to identify common strategies for applying provider-based CDS interventions across six genomic medicine clinical research projects funded by an NIH consortium. Each project’s strategies were elicited via a structured survey derived from a typology of implementation strategies, the Expert Recommendations for Implementing Change (ERIC), and follow-up interviews guided by both implementation strategy reporting criteria and a planning framework, RE-AIM, to obtain more detail about implementation strategies and desired outcomes. We found that, on average, the three pharmacogenomics implementation projects used more strategies than the disease-focused projects. Overall, projects had four implementation strategies in common; however, operationalization of each differed in accordance with each study’s implementation outcomes. These four common strategies may be important for precision medicine program implementation, and pharmacogenomics may require more integration into clinical care. Understanding how and why these strategies were successfully employed could be useful for others implementing genomic or precision medicine programs in different contexts.


Author(s):  
Seyoung Mun ◽  
Songmi Kim ◽  
Wooseok Lee ◽  
Keunsoo Kang ◽  
Thomas J. Meyer ◽  
...  

AbstractAdvances in next-generation sequencing (NGS) technology have made personal genome sequencing possible, and indeed, many individual human genomes have now been sequenced. Comparisons of these individual genomes have revealed substantial genomic differences between human populations as well as between individuals from closely related ethnic groups. Transposable elements (TEs) are known to be one of the major sources of these variations and act through various mechanisms, including de novo insertion, insertion-mediated deletion, and TE–TE recombination-mediated deletion. In this study, we carried out de novo whole-genome sequencing of one Korean individual (KPGP9) via multiple insert-size libraries. The de novo whole-genome assembly resulted in 31,305 scaffolds with a scaffold N50 size of 13.23 Mb. Furthermore, through computational data analysis and experimental verification, we revealed that 182 TE-associated structural variation (TASV) insertions and 89 TASV deletions contributed 64,232 bp in sequence gain and 82,772 bp in sequence loss, respectively, in the KPGP9 genome relative to the hg19 reference genome. We also verified structural differences associated with TASVs by comparative analysis with TASVs in recent genomes (AK1 and TCGA genomes) and reported their details. Here, we constructed a new Korean de novo whole-genome assembly and provide the first study, to our knowledge, focused on the identification of TASVs in an individual Korean genome. Our findings again highlight the role of TEs as a major driver of structural variations in human individual genomes.


Author(s):  
Albrecht Stenzinger ◽  
Anders Edsjö ◽  
Carolin Ploeger ◽  
Mikaela Friedman ◽  
Stefan Fröhling ◽  
...  

Author(s):  
Michael Abbott ◽  
Lynda McKenzie ◽  
Blanca Viridiana Guizar Moran ◽  
Sebastian Heidenreich ◽  
Rodolfo Hernández ◽  
...  

AbstractNovel developments in genomic medicine may reduce the length of the diagnostic odyssey for patients with rare diseases. Health providers must thus decide whether to offer genome sequencing for the diagnosis of rare conditions in a routine clinical setting. We estimated the costs of singleton standard genetic testing and trio-based whole genome sequencing (WGS), in the context of the Scottish Genomes Partnership (SGP) study. We also explored what users value about genomic sequencing. Insights from the costing and value assessments will inform a subsequent economic evaluation of genomic medicine in Scotland. An average cost of £1,841 per singleton was estimated for the standard genetic testing pathway, with significant variability between phenotypes. WGS cost £6625 per family trio, but this estimate reflects the use of WGS during the SGP project and large cost savings may be realised if sequencing was scaled up. Patients and families valued (i) the chance of receiving a diagnosis (and the peace of mind and closure that brings); (ii) the information provided by WGS (including implications for family planning and secondary findings); and (iii) contributions to future research. Our costings will be updated to address limitations of the current study for incorporation in budget impact modelling and cost-effectiveness analysis (cost per diagnostic yield). Our insights into the benefits of WGS will guide the development of a discrete choice experiment valuation study. This will inform a user-perspective cost–benefit analysis of genome-wide sequencing, accounting for the broader non-health outcomes. Taken together, our research will inform the long-term strategic development of NHS Scotland clinical genetics testing services, and will be of benefit to others seeking to undertake similar evaluations in different contexts.


2021 ◽  
pp. 1-12
Author(s):  
Holly Etchegary ◽  
Daryl Pullman ◽  
Charlene Simmonds ◽  
Zoha Rabie ◽  
Proton Rahman

<b><i>Introduction:</i></b> The growth of global sequencing initiatives and commercial genomic test offerings suggests the public will increasingly be confronted with decisions about sequencing. Understanding public attitudes can assist efforts to integrate sequencing into care and inform the development of public education and outreach strategies. <b><i>Methods:</i></b> A 48-item online survey was advertised on Facebook in Eastern Canada and hosted on SurveyMonkey in late 2018. The survey measured public interest in whole genome sequencing and attitudes toward various aspects of sequencing using vignettes, scaled, and open-ended items. <b><i>Results:</i></b> While interest in sequencing was high, critical attitudes were observed. In particular, items measuring features of patient control and choice regarding genomic data were strongly endorsed by respondents. Majority wanted to specify upfront how their data could be used, retain the ability to withdraw their sample at a later date, sign a written consent form, and speak to a genetic counselor prior to sequencing. Concerns about privacy and unauthorized access to data were frequently observed. Education level was the sociodemographic variable most often related to attitude statements such that those with higher levels of education generally displayed more critical attitudes. <b><i>Conclusions:</i></b> Attitudes identified here could be used to inform the development of implementation strategies for genomic medicine. Findings suggest health systems must address patient concerns about privacy, consent practices, and the strong desire to control what happens to their genomic data through public outreach and education. Specific oversight procedures and policies that are clearly communicated to the public will be required.


Bone Reports ◽  
2021 ◽  
Vol 14 ◽  
pp. 100765
Author(s):  
Yi-Hsiang Hsu ◽  
Joyce W. Tang ◽  
Hanfei Xu ◽  
Cecily Choy ◽  
May Montasser ◽  
...  

2020 ◽  
Vol 36 (10) ◽  
pp. 3242-3243 ◽  
Author(s):  
Samuel O’Donnell ◽  
Gilles Fischer

Abstract Summary MUM&Co is a single bash script to detect structural variations (SVs) utilizing whole-genome alignment (WGA). Using MUMmer’s nucmer alignment, MUM&Co can detect insertions, deletions, tandem duplications, inversions and translocations greater than 50 bp. Its versatility depends upon the WGA and therefore benefits from contiguous de-novo assemblies generated by third generation sequencing technologies. Benchmarked against five WGA SV-calling tools, MUM&Co outperforms all tools on simulated SVs in yeast, plant and human genomes and performs similarly in two real human datasets. Additionally, MUM&Co is particularly unique in its ability to find inversions in both simulated and real datasets. Lastly, MUM&Co’s primary output is an intuitive tabulated file containing a list of SVs with only necessary genomic details. Availability and implementation https://github.com/SAMtoBAM/MUMandCo. Supplementary information Supplementary data are available at Bioinformatics online.


2017 ◽  
Vol 20 (5) ◽  
pp. 545-553 ◽  
Author(s):  
Susan M Wolf ◽  
Laura M Amendola ◽  
Jonathan S Berg ◽  
Wendy K Chung ◽  
Ellen Wright Clayton ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document