scholarly journals Low-Light Image Enhancement Base on Brightness Attention Mechanism Generative Adversarial Networks

Author(s):  
Chunzhi Wang ◽  
Zeyu Ma ◽  
Jiarun Fu ◽  
Rong Gao ◽  
Hefei Ling ◽  
...  

Abstract With the development of intelligent technology, the concept of smart city, which is used to optimize urban management and services and improve the quality of life of citizens, has gradually been integrated into human social life. However, dark lighting environments in reality, such as insufficient light at night, cause or block photographic images in low brightness, severe noise, and a large number of details are lost, resulting in a huge loss of image content and information, which hinders further analysis and use. Such problems not only exist in the development of smart cities, but also exist in traditional criminal investigation, scientific photography and other fields, such as the accuracy of low-light image. However, in the current research results, there is no perfect means to deal with the above problems. Therefore, the study of low-light image enhancement has important theoretical significance and practical application value for the development of smart cities. In order to improve the quality of low-light enhanced images, this paper tries to introduce the luminance attention mechanism to improve the enhancement efficiency. The main contents of this paper are summarized as follows: using the attention mechanism, a method of low-light image enhancement based on the brightness attention mechanism to generative adversarial networks is proposed. This method uses brightness attention mechanism to predict the illumination distribution of low-light image and guides the enhancement network to enhance the image adaptiveness in different luminance regions. At the same time, u-NET network is designed and constructed to improve the modeling process of low-light image. We verified the performance of the algorithm on the synthetic data set and compared it with traditional image enhancement methods (HE, SRIE) and deep learning methods (DSLR). The experimental results show that our proposed network model has relatively good enhancement quality for low-light images, and improves the overall robustness, which has practical significance for solving the problem of low-light image enhancement in smart cities.

Author(s):  
Lingyu Yan ◽  
Jiarun Fu ◽  
Chunzhi Wang ◽  
Zhiwei Ye ◽  
Hongwei Chen ◽  
...  

AbstractWith the development of image recognition technology, face, body shape, and other factors have been widely used as identification labels, which provide a lot of convenience for our daily life. However, image recognition has much higher requirements for image conditions than traditional identification methods like a password. Therefore, image enhancement plays an important role in the process of image analysis for images with noise, among which the image of low-light is the top priority of our research. In this paper, a low-light image enhancement method based on the enhanced network module optimized Generative Adversarial Networks(GAN) is proposed. The proposed method first applied the enhancement network to input the image into the generator to generate a similar image in the new space, Then constructed a loss function and minimized it to train the discriminator, which is used to compare the image generated by the generator with the real image. We implemented the proposed method on two image datasets (DPED, LOL), and compared it with both the traditional image enhancement method and the deep learning approach. Experiments showed that our proposed network enhanced images have higher PNSR and SSIM, the overall perception of relatively good quality, demonstrating the effectiveness of the method in the aspect of low illumination image enhancement.


Author(s):  
Guangtao Zhai ◽  
Wei Sun ◽  
Xiongkuo Min ◽  
Jiantao Zhou

Low-light image enhancement algorithms (LIEA) can light up images captured in dark or back-lighting conditions. However, LIEA may introduce various distortions such as structure damage, color shift, and noise into the enhanced images. Despite various LIEAs proposed in the literature, few efforts have been made to study the quality evaluation of low-light enhancement. In this article, we make one of the first attempts to investigate the quality assessment problem of low-light image enhancement. To facilitate the study of objective image quality assessment (IQA), we first build a large-scale low-light image enhancement quality (LIEQ) database. The LIEQ database includes 1,000 light-enhanced images, which are generated from 100 low-light images using 10 LIEAs. Rather than evaluating the quality of light-enhanced images directly, which is more difficult, we propose to use the multi-exposure fused (MEF) image and stack-based high dynamic range (HDR) image as a reference and evaluate the quality of low-light enhancement following a full-reference (FR) quality assessment routine. We observe that distortions introduced in low-light enhancement are significantly different from distortions considered in traditional image IQA databases that are well-studied, and the current state-of-the-art FR IQA models are also not suitable for evaluating their quality. Therefore, we propose a new FR low-light image enhancement quality assessment (LIEQA) index by evaluating the image quality from four aspects: luminance enhancement, color rendition, noise evaluation, and structure preserving, which have captured the most key aspects of low-light enhancement. Experimental results on the LIEQ database show that the proposed LIEQA index outperforms the state-of-the-art FR IQA models. LIEQA can act as an evaluator for various low-light enhancement algorithms and systems. To the best of our knowledge, this article is the first of its kind comprehensive low-light image enhancement quality assessment study.


2020 ◽  
Vol 57 (20) ◽  
pp. 201022
Author(s):  
吴若有 Wu Ruoyou ◽  
王德兴 Wang Dexing ◽  
袁红春 Yuan Hongchun

2019 ◽  
Vol 9 (18) ◽  
pp. 3908 ◽  
Author(s):  
Jintae Kim ◽  
Shinhyeok Oh ◽  
Oh-Woog Kwon ◽  
Harksoo Kim

To generate proper responses to user queries, multi-turn chatbot models should selectively consider dialogue histories. However, previous chatbot models have simply concatenated or averaged vector representations of all previous utterances without considering contextual importance. To mitigate this problem, we propose a multi-turn chatbot model in which previous utterances participate in response generation using different weights. The proposed model calculates the contextual importance of previous utterances by using an attention mechanism. In addition, we propose a training method that uses two types of Wasserstein generative adversarial networks to improve the quality of responses. In experiments with the DailyDialog dataset, the proposed model outperformed the previous state-of-the-art models based on various performance measures.


2020 ◽  
Vol 12 (16) ◽  
pp. 2586 ◽  
Author(s):  
Pawel Burdziakowski

The visual data acquisition from small unmanned aerial vehicles (UAVs) may encounter a situation in which blur appears on the images. Image blurring caused by camera motion during exposure significantly impacts the images interpretation quality and consequently the quality of photogrammetric products. On blurred images, it is difficult to visually locate ground control points, and the number of identified feature points decreases rapidly together with an increasing blur kernel. The nature of blur can be non-uniform, which makes it hard to forecast for traditional deblurring methods. Due to the above, the author of this publication concluded that the neural methods developed in recent years were able to eliminate blur on UAV images with an unpredictable or highly variable blur nature. In this research, a new, rapid method based on generative adversarial networks (GANs) was applied for deblurring. A data set for neural network training was developed based on real aerial images collected over the last few years. More than 20 full sets of photogrammetric products were developed, including point clouds, orthoimages and digital surface models. The sets were generated from both blurred and deblurred images using the presented method. The results presented in the publication show that the method for improving blurred photo quality significantly contributed to an improvement in the general quality of typical photogrammetric products. The geometric accuracy of the products generated from deblurred photos was maintained despite the rising blur kernel. The quality of textures and input photos was increased. This research proves that the developed method based on neural networks can be used for deblur, even in highly blurred images, and it significantly increases the final geometric quality of the photogrammetric products. In practical cases, it will be possible to implement an additional feature in the photogrammetric software, which will eliminate unwanted blur and allow one to use almost all blurred images in the modelling process.


2021 ◽  
Vol 12 ◽  
Author(s):  
Nandhini Abirami R. ◽  
Durai Raj Vincent P. M.

Image enhancement is considered to be one of the complex tasks in image processing. When the images are captured under dim light, the quality of the images degrades due to low visibility degenerating the vision-based algorithms’ performance that is built for very good quality images with better visibility. After the emergence of a deep neural network number of methods has been put forward to improve images captured under low light. But, the results shown by existing low-light enhancement methods are not satisfactory because of the lack of effective network structures. A low-light image enhancement technique (LIMET) with a fine-tuned conditional generative adversarial network is presented in this paper. The proposed approach employs two discriminators to acquire a semantic meaning that imposes the obtained results to be realistic and natural. Finally, the proposed approach is evaluated with benchmark datasets. The experimental results highlight that the presented approach attains state-of-the-performance when compared to existing methods. The models’ performance is assessed using Visual Information Fidelitysse, which assesses the generated image’s quality over the degraded input. VIF obtained for different datasets using the proposed approach are 0.709123 for LIME dataset, 0.849982 for DICM dataset, 0.619342 for MEF dataset.


IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 74306-74314 ◽  
Author(s):  
Wei Huang ◽  
Yifeng Zhu ◽  
Rui Huang

Sign in / Sign up

Export Citation Format

Share Document