scholarly journals DFT Study of Super Halogen Doped Borophene With Enhanced Nonlinear Optical Properties

Author(s):  
Muhammad Ishaq ◽  
Rao Aqil Shehzad ◽  
Khurshid Ayub ◽  
javed iqbal

Abstract The concern of the present study is to investigate the non-linear optical properties of super halogen doped borophene owing to its broad applications. The first principle study of the material for its non-linear optical properties elaborated its use for electrical and optical applications. The super halogen-based borophene in lithium ion-based batteries and medical appliances have made it one of the most potential materials for optoelectronics. First, hyperpolarizability (βo) of pure and doped B36 is computed and the difference between their values was examined. The vertical ionization energy (VIE) was calculated for pure and doped systems. The interaction energy (Eint) for all combinations was computed. It would be expected to one of the best materials to have high capacity and resistance. For all the calculations and to calculate the HOMO and LUMO energy gap, the density functional theory (DFT) method was used. After observing all the above properties, it was predicted that these combinations are more beneficial and displayed the better nonlinear optical (NLO) for electronic devices.

2018 ◽  
Vol 2 (12) ◽  
pp. 2263-2271 ◽  
Author(s):  
Jianbo Xiong ◽  
Xinyue Li ◽  
Chunqing Yuan ◽  
Sergey Semin ◽  
Zhaoquan Yao ◽  
...  

Studies of the non-linear optical properties of classical AIEgens are rare, despite their important potential applications in organic composite photonic circuits. Here, we present experimental results, supported by theoretical calculations, of the non-linear optical (NLO) properties of TPE and its halogenated derivates.


2011 ◽  
Vol 10 (03) ◽  
pp. 279-295 ◽  
Author(s):  
BASAK KOSAR

This work presents a computational study on the tautomeric forms of (E)-4-Methoxy-2-[(4-nitrophenyl)iminomethyl]phenol, an ortho-hydroxy Schiff base compound. The electronic structure of title compound has been characterized at the B3LYP/6-311G(d,p) level of density functional theory. The first hyperpolarizability values have been obtained from the molecular polarizabilities for both tautomers. The second-order non-linear optical properties have been investigated based on their relationships with the natural bond orbitals and frontier molecular orbitals. The changes of thermodynamic properties with temperature going from 100 K to 300 K have been investigated for the reactants and the reaction products tautomers. Tautomeric equilibrium constant derived from the difference between the Gibbs free energies of tautomers has been obtained at different temperatures. The relationship between formation enthalpy and entropy changes has been investigated with the enthalpy-entropy compensation.


2017 ◽  
Vol 5 (11) ◽  
pp. 2865-2870 ◽  
Author(s):  
Tariq Khan ◽  
Muhammad Adnan Asghar ◽  
Zhihua Sun ◽  
Aurang Zeb ◽  
Chengmin Ji ◽  
...  

A supra-molecular crystal, 1-[C6H13NH][18-crown-6][ClO4] monohydrate, has been reported to show reversible dielectric anomalies and nonlinear optical properties, which suggests that it could be conceived as the potential switchable dielectric and non-linear optical material.


2015 ◽  
Vol 68 (10) ◽  
pp. 1502 ◽  
Author(s):  
Muhammad Ramzan Saeed Ashraf Janjua ◽  
Saba Jamil ◽  
Asif Mahmood ◽  
Atifa Zafar ◽  
Muhammad Haroon ◽  
...  

In this research article, we reported solvent effects on non-linear optical (NLO) properties of 5,5′-disubstituted-2,2′-bipyridine complexes of ruthenium. The polarizability (α) and hyperpolarizability (β) were calculated in the gas phase. Benzene (ϵ (dielectric constant) = 2.3), THF (ϵ = 7.52), dichloromethane (ϵ = 8.93), acetone (ϵ = 21.01), methanol (ϵ = 33.00), and water (ϵ = 80.10) were used by density functional theory. These solvents cover a wide range of polarities. The results of theoretical investigation showed that the non-linear optical properties were significantly increased with the increase in solvent polarity. The results of this study also showed that similarly to structural modifications, polarity of the medium may play a significant role in modulating the NLO properties.


Author(s):  
Auwal A. Abubakar ◽  
A. B. Suleiman ◽  
A. S. Gidado

Perylene and its derivatives are some of the promising organic semiconductors. They have found vast applications in many areas such as photovoltaic systems, organic light-emitting diodes, and so on. The instability of organic molecules under ambient conditions is one factor deterring the commercialization of organic semiconductor devices. Currently, most of the investigation of Perylene and its derivatives concentrated on its diimide and bisimide derivatives. In this work, an investigation of the effects of doping Bromine and Fluorine on the electronic and non-linear optical properties was carried out based on Density Functional Theory (DFT) as implemented in the Gaussian 09 software package. We computed the Molecular geometries of the molecules, HOMO-LUMO energy gap, global chemical indices and non-linear optical properties using the same method. The bond lengths and angles of the mono-halogenated molecules at different charge states were found to be less than that of the isolated Perylene. 1-fluoroperylene was found to be the most stable amongst the studied molecule for having the least bond angles and bond lengths. In the calculation of the energy bandgap neutral 1-fluoroperylene was observed to have the highest energy gap 3.0414 eV and 3.0507 eV for 6-31++G(d,p) and 6-311++G(d,p) basis sets respectively. These results were found to agree with the existing literature. This reconfirmed 1-fluoroperylene as the most stable molecule. The computations of the ionic molecules reported small values of the energy gap. The molecule with the most chemical hardness was obtained to be the neutral 1-fluoroperylene with a chemical hardness of 1.5253eV. All the ionic molecules results were found to be more reactive than their neutral form for having lower values of chemical hardness. For NLO calculations, the results showed an increment in their values with the ionic hybrid molecules having the largest values.  In the case of first-order hyper-polarizability, 1-bromoperylene (neutral), 1-fluoroperylene (neutral), 1-bromoperylene (anionic), 1-fluoroperylene (anionic), 1-bromoperylene (cationic) and 1-fluoroperylene (cationic) were found to be 73.93%, 1.71%, 83.9%, 39.2%,38.7% and 41.7% larger than that of Urea respectively. These calculated results make these hybrid molecules suitable for a wide range of optoelectronic applications.


2020 ◽  
Vol 49 (47) ◽  
pp. 17263-17273
Author(s):  
Shabnam Alizadeh ◽  
Gülşen Kösoğlu ◽  
Murat Erdem ◽  
Nursel Açar-Selçuki ◽  
Metin Özer ◽  
...  

Novel SUBO bridged ball-type metallophthalocyanines were synthesized. NLA of the complexes indicated that BTCuPc has significantly better nonlinear optical properties. DFT was used for geometry optimizations and optical analyses.


Sign in / Sign up

Export Citation Format

Share Document