scholarly journals Biomechanical assessment and finite element analysis of a simulated axial-loading experiment on a wrist protector model

2020 ◽  
Author(s):  
Jian Ying He ◽  
Li Zhang

Abstract Objective To evaluate the biomechanical analysis and effect of the wrist protector and provide a theoretical basis for wrist fractures and the optimal design of wrist protectors. Methods 6 cadaveric wrist models were axially loaded 600 N stress, and the stress magnitude and distribution of the experimental group (wearing wrist protectors) and control group were obtained. Furthermore, a three-dimensional finite element analysis was conducted to verify the scientificity and effectiveness of the models. Results The stresses on the radial distal palmar, ulnar distal palmar, radial distal dorsal, ulnar distal dorsal, radial proximal palmar and ulnar proximal palmar units in the experimental group were lower than those in the control group (P < 0.05). However, the stresses on the radial proximal dorsal and ulnar proximal dorsal units were higher than those in the control group (P>0.05). Conclusion The stress on the radioulnar palmar unit was high, while the radioulnar dorsal unit one was relatively low. Within the range of physiological loads, wearing wrist protectors can significantly reduce the stress on the radioulnar distal palmar, radioulnar proximal palmar and radioulnar distal dorsal units.

2018 ◽  
Vol 876 ◽  
pp. 138-146
Author(s):  
Aswin Yodrux ◽  
Nantakrit Yodpijit ◽  
Manutchanok Jongprasithporn

This paper presents the use of Three-Dimensional Finite Element Method (3D-FEM) for biomechanical analysis on dental implant prosthetics. This research focuses on three patents of threads of dental implant systems from United States Patent and Trademark Office (USPTO) and two new conceptual design models. The three-dimensional finite element analysis is performed on dental implant models, with compressive forces of 50, 100, and 150 N, and a shear force of 20 N with the force angle of 60 degrees with the normal line respectively. The Stress and displacement analysis is conducted at four different areas (abutment, implant, cortical bone, and cancellous bone). Findings from this research provide guidelines for new product design of dental implant prosthetics with stress distribution and displacement characteristics.


2007 ◽  
Vol 35 (3) ◽  
pp. 226-238 ◽  
Author(s):  
K. M. Jeong ◽  
K. W. Kim ◽  
H. G. Beom ◽  
J. U. Park

Abstract The effects of variations in stiffness and geometry on the nonuniformity of tires are investigated by using the finite element analysis. In order to evaluate tire uniformity, a three-dimensional finite element model of the tire with imperfections is developed. This paper considers how imperfections, such as variations in stiffness or geometry and run-out, contribute to detrimental effects on tire nonuniformity. It is found that the radial force variation of a tire with imperfections depends strongly on the geometrical variations of the tire.


Sign in / Sign up

Export Citation Format

Share Document