scholarly journals Landslide Susceptibility Mapping Using GIS-based Information Value and Frequency Ratio Methods in Gindeberet area, West Shewa Zone, Oromia Region, Ethiopia

Author(s):  
Alembante Genene ◽  
Matebie Meten

Abstract The study area is found in Gindeberet district of West Shewa zone in Oromia Regional State of Ethiopia.This area is highly susceptible to active surface processes due to the presence of rugged morphology with steep scarps, sharp ridges, cliffs, deep gorges and valleys. This study aimed to identify and evaluate the causative factors and to prepare the landslide susceptibility maps (LSMs) of the study area. Two bivariate statistical models i.e. Information value(IV) and the Frequency ratio(FR), were used. First, active, reactivated and passive landslides and scarps were identified using Google Earth image interpretation and extensive field survey for landslide inventory. A total of 580 landslide were randomly selected into two datasets in which (80%)460 landslides were used for modeling and (20%)116 landslidesfor validation. conditioning factors (slope, aspect, curvature, distance from stream, distance from lineaments, lithology, rainfall and land use) were combined with a training landslide dataset in a ArcGIS to generate LSMs which weredivided into verylow, low, moderate, high and veryhigh susceptibility zones. LSMs for IV and FR models were validated using the Area under(ROC) curve showing a success rate of 0.836 and 0.835 respectively and a predictive rate of 0.817 and 0.818 respectively wich showed a good performance of both models. The resulting LSMs can be used for land use planning and management.

2020 ◽  
Vol 12 (1) ◽  
pp. 1440-1467
Author(s):  
Azemeraw Wubalem

AbstractThe study area in northwestern Ethiopia is one of the most landslide-prone regions, which is characterized by frequent high landslide occurrences. To predict future landslide occurrence, preparing a landslide susceptibility mapping is imperative to manage the landslide hazard and reduce damages of properties and loss of lives. Geographic information system (GIS)-based frequency ratio (FR), information value (IV), certainty factor (CF), and logistic regression (LR) methods were applied. The landslide inventory map is prepared from historical records and Google Earth imagery interpretation. Thus, 717 landslides were mapped, of which 502 (70%) landslides were used to build landslide susceptibility models, and the remaining 215 (30%) landslides were used to model validation. Eleven factors such as lithology, land use/cover, distance to drainage, distance to lineament, normalized difference vegetation index, drainage density, rainfall, soil type, slope, aspect, and curvature were evaluated and their relationship with landslide occurrence was analyzed using the GIS tool. Then, landslide susceptibility maps of the study area are categorized into very low, low, moderate, high, and very high susceptibility classes. The four models were validated by the area under the curve (AUC) and landslide density. The results for the AUC are 93.9% for the CF model, which is better than 93.2% using IV, 92.7% using the FR model, and 87.9% using the LR model. Moreover, the statistical significance test between the models was performed using LR analysis by SPSS software. The result showed that the LR and CF models have higher statistical significance than the FR and IV methods. Although all statistical models indicated higher prediction accuracy, based on their statistical significance analysis result (Table 5), the LR model is relatively better followed by the CF model for regional land use planning, landslide hazard mitigation, and prevention purposes.


2021 ◽  
Vol 11 (1) ◽  
pp. 167-177
Author(s):  
Niraj Baral ◽  
Akhilesh Kumar Karna ◽  
Suraj Gautam

Landslides are the most common natural hazards in Nepal especially in the mountainous terrain. The existing topographical scenario, complex geological settings followed by the heavy rainfall in monsoon has contributed to a large number of landslide events in the Kaski district. In this study, landslide susceptibility was modeled with the consideration of twelve conditioning factors to landslides like slope, aspect, elevation, Curvature, geology, land-use, soil type, precipitation, road proximity, drainage proximity, and thrust proximity. A Google-earth-based landslide inventory map of 637 landslide locations was prepared using data from Disinventar, reports, and satellite image interpretation and was randomly subdivided into a training set (70%) with 446 Points and a test set with 191 points (30%). The relationship among the landslides and the conditioning factors were statistically evaluated through the use of Modified Frequency ratio analysis. The results from the analysis gave the highest Prediction rate (PR) of 6.77 for elevation followed by PR of 66.45 for geology and PR of 6.38 for the landcover. The analysis was then validated by calculating the Area Under a Curve (AUC) and the prediction rate was found to be 68.87%. The developed landslide susceptibility map is helpful for the locals and authorities in planning and applying different intervention measures in the Kaski District.


2020 ◽  
Author(s):  
Kumari Sweta ◽  
Ajanta Goswami

<p><strong>Abstract</strong><strong>:</strong> Landslides are one of the most common and devastating natural hazards worldwide, which cause injuries to life and damage to properties, infrastructures leading to high-cost maintenance. In this study frequency ratio, information value and fuzzy logic models were used for landslide susceptibility mapping of an area of 356km<sup>2</sup> in and around Dharamshala, Himachal Pradesh, using earth observation data. Dharamshala, a part of North-western Himalaya, is one of the fastest-growing tourism hubs with a total population of 30,764 according to the 2011 census and is amongst one of the hundred Indian cities to be developed as a smart city under PM’s Smart Cities Mission. The thrust for infrastructure development has led to a need for prior planning to minimize the consequences of landslide hazards. The final produced landslide susceptibility zonation maps with better accuracy could be used for land-use planning to prevent future losses. A landslide inventory for the study area was prepared through visual interpretation of high-resolution satellite imagery and available inventory report. Remote sensing data and other ancillary data like geological data were collected and processed in the GIS environment to generate thematic maps of parameters influencing landslide occurrence. The landslide causative parameters used in the study are slope angle, slope aspect, elevation, curvature, topographic wetness index, relative relief, distance from lineaments, land use land cover, and geology. Using these parameters and landslide inventory weight and membership value was calculated for the Frequency ratio, information value and Fuzzy logic model, respectively. In the frequency ratio and information value model, all the landslide causative parameters were arithmetically overlaid using calculated weights for landslide susceptibility mapping. In the fuzzy logic model, different fuzzy operators were applied to the calculated fuzzy membership values. Unlike the normalization process for membership calculation present study used the cosine amplitude method, which will give more reliable results. A total of ten landslide susceptibility maps (LSM) were produced using two models, 9 from fuzzy logic and 1 from frequency ratio. All the results were verified spatially and statistically using landslide locations and ROC curves. Further, the performance and significance of different outputs were compared to select the most suitable LSM for the study area. Among all fuzzy operators, “gamma” with λ = 0.9 showed the best accuracy (84.3%) and operator “and” has the worst accuracy (77.6%). But among all 9 output maps of fuzzy logic except the output of gamma (λ = 0.9) gives satisfactory LSM rest all show the unacceptable result as the maximum number of pixels is either in very low or high susceptible zone. The validation and comparison result exhibited that the fuzzy logic (accuracy=84.3%) is better than the information value (83.46) and the frequency ratio method (accuracy=83.43%).</p><p><strong>Keywords</strong>: Bivariate Statistical Techniques, Information Value, Frequency Ratio, Fuzzy Logic, ROC</p>


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Azemeraw Wubalem

AbstractUatzau basin in northwestern Ethiopia is one of the most landslide-prone regions, which characterized by frequent high landslide occurrences causing damages in farmlands, non-cultivated lands, properties, and loss of life. Preparing a Landslide susceptibility mapping is imperative to manage the landslide hazard and reduce damages of properties and loss of lives. GIS-based frequency ratio, information value, and certainty factor methods were applied. The landslide inventory map was prepared from detailed fieldwork and Google Earth imagery interpretation. Thus, 514 landslides were mapped, and out of which 359 (70%) of landslides were randomly selected keeping their spatial distribution to build landslide susceptibility models, while the remaining 155 (30%) of the landslides were used to model validation. In this study, six factors, including lithology, land use/cover, distance to stream, slope gradient, slope aspect, and slope curvature were evaluated. The effects of the landslide factor of slope instability were determined by comparing with landslide inventory raster using the GIS environment. The landslide susceptibility maps of the Uatzau area were categorized into very low, low, moderate, high and very high susceptibility classes. The landslide susceptibility maps of the three models validated by the ROC curve. The results for the area under the curve (AUC) are 88.83% for the frequency ratio model, 87.03% for certainty factor, and 84.83% of information value models, which are indicating very good accuracy in the identification of landslide susceptibility zones of a region. From these resulted maps, it is possible to recommend, the statistical methods (Frequency Ratio, Information Value, and Certainty Factor Methods) are adequate to landslide susceptibility mapping. The landslide susceptibility maps can be used for regional land use planning and landslide hazard mitigation purposes.


2020 ◽  
Author(s):  
Azemeraw Wubalem

Abstract Abstract Uatzau basin in northwestern Ethiopia is one of the most landslide-prone regions, which characterized by frequent high landslide occurrences causing damages in farmlands, non-cultivated lands, properties, and loss of life. Preparing a Landslide susceptibility mapping is imperative to manage the landslide hazard and reduce damages of properties and loss of lives. GIS-based frequency ratio, information value, and certainty factor methods were applied. The landslide inventory map was prepared from detailed fieldwork and Google Earth imagery interpretation. Thus, 514 landslides were mapped, and out of which 359 (70%) of landslides were randomly selected keeping their spatial distribution to build landslide susceptibility models, while the remaining 155 (30%) of the landslides were used to model validation. In this study, six factors, including lithology, land use/cover, distance to stream, slope gradient, slope aspect, and slope curvature were evaluated. The effects of the landslide factor of slope instability were determined by comparing with landslide inventory raster using the GIS environment. The landslide susceptibility maps of the Uatzau area were categorized into very low, low, moderate, high and very high susceptibility classes. The landslide susceptibility maps of the three models validated by the ROC curve. The results for the area under the curve (AUC) are 88.83% for the frequency ratio model, 87.03% for certainty factor, and 84.83% of information value models, which are indicating very good accuracy in the identification of landslide susceptibility zones of a region. From these resulted maps, it is possible to recommend, the statistical methods (Frequency Ratio, Information Value, and Certainty Factor Methods) are adequate to landslide susceptibility mapping. The landslide susceptibility maps can be used for regional land use planning and landslide hazard mitigation purposes. Keywords: landslide; susceptibility; Geographic Information System (GIS); certainty factor; frequency ratio; information value; Ethiopia.


2015 ◽  
Vol 4 (2) ◽  
pp. 16-33 ◽  
Author(s):  
Halil Akıncı ◽  
Ayşe Yavuz Özalp ◽  
Mehmet Özalp ◽  
Sebahat Temuçin Kılıçer ◽  
Cem Kılıçoğlu ◽  
...  

Artvin is one of the provinces in Turkey where landslides occur most frequently. There have been numerous landslides characterized as natural disaster recorded across the province. The areas sensitive to landslides across the province should be identified in order to ensure people's safety, to take the necessary measures for reducing any devastating effects of landslides and to make the right decisions in respect to land use planning. In this study, the landslide susceptibility map of the Central district of Artvin was produced by using Bayesian probability model. Parameters including lithology, altitude, slope, aspect, plan and profile curvatures, soil depth, topographic wetness index, land cover, and proximity to the road and stream were used in landslide susceptibility analysis. The landslide susceptibility map produced in this study was validated using the receiver operating characteristics (ROC) based on area under curve (AUC) analysis. In addition, control landslide locations were used to validate the results of the landslide susceptibility map and the validation analysis resulted in 94.30% accuracy, a reliable outcome for this map that can be useful for general land use planning in Artvin.


Water ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 1402 ◽  
Author(s):  
Nohani ◽  
Moharrami ◽  
Sharafi ◽  
Khosravi ◽  
Pradhan ◽  
...  

Landslides are the most frequent phenomenon in the northern part of Iran, which cause considerable financial and life damages every year. One of the most widely used approaches to reduce these damages is preparing a landslide susceptibility map (LSM) using suitable methods and selecting the proper conditioning factors. The current study is aimed at comparing four bivariate models, namely the frequency ratio (FR), Shannon entropy (SE), weights of evidence (WoE), and evidential belief function (EBF), for a LSM of Klijanrestagh Watershed, Iran. Firstly, 109 locations of landslides were obtained from field surveys and interpretation of aerial photographs. Then, the locations were categorized into two groups of 70% (74 locations) and 30% (35 locations), randomly, for modeling and validation processes, respectively. Then, 10 conditioning factors of slope aspect, curvature, elevation, distance from fault, lithology, normalized difference vegetation index (NDVI), distance from the river, distance from the road, the slope angle, and land use were determined to construct the spatial database. From the results of multicollinearity, it was concluded that no collinearity existed between the 10 considered conditioning factors in the occurrence of landslides. The receiver operating characteristic (ROC) curve and the area under the curve (AUC) were used for validation of the four achieved LSMs. The AUC results introduced the success rates of 0.8, 0.86, 0.84, and 0.85 for EBF, WoE, SE, and FR, respectively. Also, they indicated that the rates of prediction were 0.84, 0.83, 0.82, and 0.79 for WoE, FR, SE, and EBF, respectively. Therefore, the WoE model, having the highest AUC, was the most accurate method among the four implemented methods in identifying the regions at risk of future landslides in the study area. The outcomes of this research are useful and essential for the government, planners, decision makers, researchers, and general land-use planners in the study area.


2021 ◽  
Author(s):  
Md. Sharafat Chowdhury ◽  
Bibi Hafsa

Abstract This study attempts to produce Landslide Susceptibility Map for Chattagram District of Bangladesh by using five GIS based bivariate statistical models, namely the Frequency Ratio (FR), Shanon’s Entropy (SE), Weight of Evidence (WofE), Information Value (IV) and Certainty Factor (CF). A secondary landslide inventory database was used to correlate the previous landslides with the landslide conditioning factors. Sixteen landslide conditioning factors of Slope Aspect, Slope Angle, Geology, Elevation, Plan Curvature, Profile Curvature, General Curvature, Topographic Wetness Index, Stream Power Index, Sediment Transport Index, Topographic Roughness Index, Distance to Stream, Distance to Anticline, Distance to Fault, Distance to Road and NDVI were used. The Area Under Curve (AUC) was used for validation of the LSMs. The predictive rate of AUC for FR, SE, WofE, IV and CF were 76.11%, 70.11%, 78.93%, 76.57% and 80.43% respectively. CF model indicates 15.04% of areas are highly susceptible to landslide. All the models showed that the high elevated areas are more susceptible to landslide where the low-lying river basin areas have a low probability of landslide occurrence. The findings of this research will contribute to land use planning, management and hazard mitigation of the CHT region.


Author(s):  
Viet-Ha Nhu ◽  
Ayub Mohammadi ◽  
Himan Shahabi ◽  
Baharin Bin Ahmad ◽  
Nadhir Al-Ansari ◽  
...  

We used AdaBoost (AB), alternating decision tree (ADTree), and their combination as an ensemble model (AB-ADTree) to spatially predict landslides in the Cameron Highlands, Malaysia. The models were trained with a database of 152 landslides compiled using Synthetic Aperture Radar Interferometry, Google Earth images, and field surveys, and 17 conditioning factors (slope, aspect, elevation, distance to road, distance to river, proximity to fault, road density, river density, normalized difference vegetation index, rainfall, land cover, lithology, soil types, curvature, profile curvature, stream power index, and topographic wetness index). We carried out the validation process using the area under the receiver operating characteristic curve (AUC) and several parametric and non-parametric performance metrics, including positive predictive value, negative predictive value, sensitivity, specificity, accuracy, root mean square error, and the Friedman and Wilcoxon sign rank tests. The AB model (AUC = 0.96) performed better than the ensemble AB-ADTree model (AUC = 0.94) and successfully outperformed the ADTree model (AUC = 0.59) in predicting landslide susceptibility. Our findings provide insights into the development of more efficient and accurate landslide predictive models that can be used by decision makers and land-use managers to mitigate landslide hazards.


Sign in / Sign up

Export Citation Format

Share Document