bivariate models
Recently Published Documents


TOTAL DOCUMENTS

71
(FIVE YEARS 22)

H-INDEX

17
(FIVE YEARS 3)

2021 ◽  
Vol 12 ◽  
Author(s):  
Anju Biswas ◽  
Mario Henrique Murad Leite Andrade ◽  
Janam P. Acharya ◽  
Cleber Lopes de Souza ◽  
Yolanda Lopez ◽  
...  

The application of remote sensing in plant breeding is becoming a routine method for fast and non-destructive high-throughput phenotyping (HTP) using unmanned aerial vehicles (UAVs) equipped with sensors. Alfalfa (Medicago sativa L.) is a perennial forage legume grown in more than 30 million hectares worldwide. Breeding alfalfa for herbage accumulation (HA) requires frequent and multiple phenotyping efforts, which is laborious and costly. The objective of this study was to assess the efficiency of UAV-based imagery and spatial analysis in the selection of alfalfa for HA. The alfalfa breeding population was composed of 145 full-sib and 34 half-sib families, and the experimental design was a row-column with augmented representation of controls. The experiment was established in November 2017, and HA was harvested four times between August 2018 and January 2019. A UAV equipped with a multispectral camera was used for HTP before each harvest. Four vegetation indices (VIs) were calculated from the UAV-based images: NDVI, NDRE, GNDVI, and GRVI. All VIs showed a high correlation with HA, and VIs predicted HA with moderate accuracy. HA and NDVI were used for further analyses to calculate the genetic parameters using linear mixed models. The spatial analysis had a significant effect in both dimensions (rows and columns) for HA and NDVI, resulting in improvements in the estimation of genetic parameters. Univariate models for NDVI and HA, and bivariate models, were fit to predict family performance for scenarios with various levels of HA data (simulated in silico by assigning missing values to full dataset). The bivariate models provided higher correlation among predicted values, higher coincidence for selection, and higher genetic gain even for scenarios with only 30% of HA data. Hence, HTP is a reliable and efficient method to aid alfalfa phenotyping to improve HA. Additionally, the use of spatial analysis can also improve the accuracy of selection in breeding trials.


2021 ◽  
Vol 53 (1) ◽  
Author(s):  
Chuanke Fu ◽  
Tage Ostersen ◽  
Ole F. Christensen ◽  
Tao Xiang

Abstract Background The single-step genomic best linear unbiased prediction (SSGBLUP) method is a popular approach for genetic evaluation with high-density genotype data. To solve the problem that pedigree and genomic relationship matrices refer to different base populations, a single-step genomic method with metafounders (MF-SSGBLUP) was put forward. The aim of this study was to compare the predictive ability and bias of genomic evaluations obtained with MF-SSGBLUP and standard SSGBLUP. We examined feed conversion ratio (FCR) and average daily gain (ADG) in DanBred Landrace (LL) and Yorkshire (YY) pigs using both univariate and bivariate models, as well as the optimal weighting factors (ω), which represent the proportions of the genetic variance not captured by markers, for ADG and FCR in SSGBLUP and MF-SSGBLUP. Results In general, SSGBLUP and MF-SSGBLUP showed similar predictive abilities and bias of genomic estimated breeding values (GEBV). In the LL population, the predictive ability for ADG reached 0.36 using uni- or bi-variate SSGBLUP or MF-SSGBLUP, while the predictive ability for FCR was highest (0.20) for the bivariate model using MF-SSGBLUP, but differences between analyses were very small. In the YY population, predictive ability for ADG was similar for the four analyses (up to 0.35), while the predictive ability for FCR was highest (0.36) for the uni- and bi-variate MF-SSGBLUP analyses. SSGBLUP and MF-SSGBLUP exhibited nearly the same bias. In general, the bivariate models had lower bias than the univariate models. In the LL population, the optimal ω for ADG was ~ 0.2 in the univariate or bivariate models using SSGBLUP or MF-SSGBLUP, and the optimal ω for FCR was 0.70 and 0.55 for SSGBLUP and MF-SSGBLUP, respectively. In the YY population, the optimal ω ranged from 0.25 to 0. 35 for ADG across the four analyses and from 0.10 to 0.30 for FCR. Conclusions Our results indicate that MF-SSGBLUP performed slightly better than SSGBLUP for genomic evaluation. There was little difference in the optimal weighting factors (ω) between SSGBLUP and MF-SSGBLUP. Overall, the bivariate model using MF-SSGBLUP is recommended for single-step genomic evaluation of ADG and FCR in DanBred Landrace and Yorkshire pigs.


Author(s):  
David A. Sánchez-Páez

Evidence from research on infectious diseases suggests that income inequality is related to higher rates of infection and death in disadvantaged population groups. Our objective is to examine whether there was an association between income inequality and the numbers of cases and deaths during the first wave of the COVID- 19 pandemic in European countries. We determined the duration of the first wave by first smoothing the number of daily cases, and then using a LOESS regression to fit the smoothed trend. Next, we estimated quasi-Poisson regressions. Results from the bivariate models suggest there was a moderate positive association between the Gini index values and the cumulated number of infections and deaths during the first wave, although the statistical significance of this association disappeared when controls were included. Results from multivariate models suggest that higher numbers of infections and deaths from COVID-19 were associated with countries having more essential workers, larger elderly populations and lower health care capacities.


Author(s):  
Elaheh Vojgani ◽  
Torsten Pook ◽  
Johannes W. R. Martini ◽  
Armin C. Hölker ◽  
Manfred Mayer ◽  
...  

Abstract Key Message The accuracy of genomic prediction of phenotypes can be increased by including the top-ranked pairwise SNP interactions into the prediction model. Abstract We compared the predictive ability of various prediction models for a maize dataset derived from 910 doubled haploid lines from two European landraces (Kemater Landmais Gelb and Petkuser Ferdinand Rot), which were tested at six locations in Germany and Spain. The compared models were Genomic Best Linear Unbiased Prediction (GBLUP) as an additive model, Epistatic Random Regression BLUP (ERRBLUP) accounting for all pairwise SNP interactions, and selective Epistatic Random Regression BLUP (sERRBLUP) accounting for a selected subset of pairwise SNP interactions. These models have been compared in both univariate and bivariate statistical settings for predictions within and across environments. Our results indicate that modeling all pairwise SNP interactions into the univariate/bivariate model (ERRBLUP) is not superior in predictive ability to the respective additive model (GBLUP). However, incorporating only a selected subset of interactions with the highest effect variances in univariate/bivariate sERRBLUP can increase predictive ability significantly compared to the univariate/bivariate GBLUP. Overall, bivariate models consistently outperform univariate models in predictive ability. Across all studied traits, locations and landraces, the increase in prediction accuracy from univariate GBLUP to univariate sERRBLUP ranged from 5.9 to 112.4 percent, with an average increase of 47 percent. For bivariate models, the change ranged from −0.3 to + 27.9 percent comparing the bivariate sERRBLUP to the bivariate GBLUP, with an average increase of 11 percent. This considerable increase in predictive ability achieved by sERRBLUP may be of interest for “sparse testing” approaches in which only a subset of the lines/hybrids of interest is observed at each location.


2021 ◽  
Author(s):  
Elaheh Vojgani ◽  
Torsten Pook ◽  
Johannes W.R. Martini ◽  
Armin C. Hölker ◽  
Manfred Mayer ◽  
...  

Abstract We compared the predictive ability of various prediction models for a maize dataset derived from 910 doubled haploid lines from two European landraces (Kemater Landmais Gelb and Petkuser Ferdinand Rot), which were tested at six locations in Germany and Spain. The compared models were Genomic Best Linear Unbiased Prediction (GBLUP) as an additive model, Epistatic Random Regression BLUP (ERRBLUP) accounting for all pairwise SNP interactions, and selective Epistatic Random Regression BLUP (sERRBLUP) accounting for a selected subset of pairwise SNP interactions. These models have been compared in both univariate and bivariate statistical settings for predictions within and across environments. Our results indicate that modeling all pairwise SNP interactions into the univariate/bivariate model (ERRBLUP) is not superior in predictive ability to the respective additive model (GBLUP). However, incorporating only a selected subset of interactions with the highest effect variances in univariate/bivariate sERRBLUP can increase predictive ability significantly compared to the univariate/bivariate GBLUP. Overall, bivariate models consistently outperform univariate models in predictive ability. Across all studied traits, locations, and landraces, the increase in prediction accuracy from univariate GBLUP to univariate sERRBLUP ranged from 5.9 to 112.4 percent, with an average increase of 47 percent. For bivariate models, the change ranged from − 0.3 to + 27.9 percent comparing the bivariate sERRBLUP to the bivariate GBLUP, with an average increase of 11 percent. This considerable increase in predictive ability achieved by sERRBLUP may be of interest for “sparse testing” approaches in which only a subset of the lines/hybrids of interest is observed at each location.


2021 ◽  
Vol 20 ◽  
pp. 196-206
Author(s):  
Daya K. Nagar ◽  
Edwin Zarrazola ◽  
Alejandro Roldán-Correa

The Kummer-gamma distribution is an extension of gamma distribution and for certain values of parameters slides to a bimodal distribution. In this article, we introduce a bivariate distribution with Kummer-gamma conditionals and call it the conditionally specified bivariate Kummer-gamma distribution/bivariate Kummer-gamma conditionals distribution. Various representations are derived for its product moments, marginal densities, marginal moments, conditional densities, and conditional moments. We also discuss several important properties including, entropies, distributions of sum, and quotient. Most of these representations involve special functions such as the Gauss and the confluent hypergeometric functions. The bivariate Kummer-gamma conditionals distribution studied in this article may serve as an alternative to many existing bivariate models with support on (0, ∞) × (0, ∞).


2021 ◽  
Vol 26 (2) ◽  
pp. e2128
Author(s):  
Jessica Beatriz Herrera-Ojeda ◽  
Gaspar Manuel Parra-Bracamonte ◽  
Nicolás López-Villalobos ◽  
José Herrera-Camacho ◽  
Karlos Edmundo Orozco-Durán

Objective: Estimate (co)variance components and genetic parameters of live weight traits and examine the effect of selection culling when using bivariate analysis in registered Charolais beef cattle. Materials and methods: The effect of incomplete data over accuracies was compared, expected progeny differences (EPD) and standard errors of prediction (SEP) were obtained and evaluated by comparing univariate and bivariate models for birth (BW), weaning (WW) and yearling (YW) weights. Results: Bivariate models for WW and YW, improved accuracies of EPDs and reduced the SEPs. Joint analysis for BW and WW increased in a 38% the accuracies and reduced SEP estimators for YW (p<0.001). Accuracies of EPD for BW obtained from univariate models were improved when BW was included in bivariate models. Conclusions: The results support the use of bivariate genetic analysis in limited or incomplete live weight indicators databases that were registered after birth, such as weaning and yearling weight.


Sign in / Sign up

Export Citation Format

Share Document