scholarly journals Landslide Susceptibility Mapping Using Different GIS-Based Bivariate Models

Water ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 1402 ◽  
Author(s):  
Nohani ◽  
Moharrami ◽  
Sharafi ◽  
Khosravi ◽  
Pradhan ◽  
...  

Landslides are the most frequent phenomenon in the northern part of Iran, which cause considerable financial and life damages every year. One of the most widely used approaches to reduce these damages is preparing a landslide susceptibility map (LSM) using suitable methods and selecting the proper conditioning factors. The current study is aimed at comparing four bivariate models, namely the frequency ratio (FR), Shannon entropy (SE), weights of evidence (WoE), and evidential belief function (EBF), for a LSM of Klijanrestagh Watershed, Iran. Firstly, 109 locations of landslides were obtained from field surveys and interpretation of aerial photographs. Then, the locations were categorized into two groups of 70% (74 locations) and 30% (35 locations), randomly, for modeling and validation processes, respectively. Then, 10 conditioning factors of slope aspect, curvature, elevation, distance from fault, lithology, normalized difference vegetation index (NDVI), distance from the river, distance from the road, the slope angle, and land use were determined to construct the spatial database. From the results of multicollinearity, it was concluded that no collinearity existed between the 10 considered conditioning factors in the occurrence of landslides. The receiver operating characteristic (ROC) curve and the area under the curve (AUC) were used for validation of the four achieved LSMs. The AUC results introduced the success rates of 0.8, 0.86, 0.84, and 0.85 for EBF, WoE, SE, and FR, respectively. Also, they indicated that the rates of prediction were 0.84, 0.83, 0.82, and 0.79 for WoE, FR, SE, and EBF, respectively. Therefore, the WoE model, having the highest AUC, was the most accurate method among the four implemented methods in identifying the regions at risk of future landslides in the study area. The outcomes of this research are useful and essential for the government, planners, decision makers, researchers, and general land-use planners in the study area.

2021 ◽  
Author(s):  
Md. Sharafat Chowdhury ◽  
Bibi Hafsa

Abstract This study attempts to produce Landslide Susceptibility Map for Chattagram District of Bangladesh by using five GIS based bivariate statistical models, namely the Frequency Ratio (FR), Shanon’s Entropy (SE), Weight of Evidence (WofE), Information Value (IV) and Certainty Factor (CF). A secondary landslide inventory database was used to correlate the previous landslides with the landslide conditioning factors. Sixteen landslide conditioning factors of Slope Aspect, Slope Angle, Geology, Elevation, Plan Curvature, Profile Curvature, General Curvature, Topographic Wetness Index, Stream Power Index, Sediment Transport Index, Topographic Roughness Index, Distance to Stream, Distance to Anticline, Distance to Fault, Distance to Road and NDVI were used. The Area Under Curve (AUC) was used for validation of the LSMs. The predictive rate of AUC for FR, SE, WofE, IV and CF were 76.11%, 70.11%, 78.93%, 76.57% and 80.43% respectively. CF model indicates 15.04% of areas are highly susceptible to landslide. All the models showed that the high elevated areas are more susceptible to landslide where the low-lying river basin areas have a low probability of landslide occurrence. The findings of this research will contribute to land use planning, management and hazard mitigation of the CHT region.


2013 ◽  
Vol 13 (1) ◽  
pp. 28-40

A methodology for landslide susceptibility assessment to delineate landslide prone areas is presented using factor analysis and fuzzy membership functions and Geographic Information Systems (GIS). A landslide inventory of 51 landslides was created in the mountainous part of Xanthi prefecture (North Greece) and the associated conditioning factors were determined for each landslide by field work. Six conditioning factors were evaluated: slope angle, slope aspect, land use, geology, distance to faults and topographical elevation. Fuzzy membership functions were defined for each factor using the landslide frequency data. Factor analysis provided weights (i.e., importance for landslide occurrences) for each one of the above conditioning factors, indicating the most important factors as geology and slope angle. An overlay and index method was adopted to produce the landslide susceptibility map. In this map 96% of the observed landslides are located in very high and high susceptibility zones, indicating a suitable approach for landslide susceptibility mapping.


2021 ◽  
Vol 13 (11) ◽  
pp. 2166
Author(s):  
Xin Yang ◽  
Rui Liu ◽  
Mei Yang ◽  
Jingjue Chen ◽  
Tianqiang Liu ◽  
...  

This study proposed a new hybrid model based on the convolutional neural network (CNN) for making effective use of historical datasets and producing a reliable landslide susceptibility map. The proposed model consists of two parts; one is the extraction of landslide spatial information using two-dimensional CNN and pixel windows, and the other is to capture the correlated features among the conditioning factors using one-dimensional convolutional operations. To evaluate the validity of the proposed model, two pure CNN models and the previously used methods of random forest and a support vector machine were selected as the benchmark models. A total of 621 earthquake-triggered landslides in Ludian County, China and 14 conditioning factors derived from the topography, geological, hydrological, geophysical, land use and land cover data were used to generate a geospatial dataset. The conditioning factors were then selected and analyzed by a multicollinearity analysis and the frequency ratio method. Finally, the trained model calculated the landslide probability of each pixel in the study area and produced the resultant susceptibility map. The results indicated that the hybrid model benefitted from the features extraction capability of the CNN and achieved high-performance results in terms of the area under the receiver operating characteristic curve (AUC) and statistical indices. Moreover, the proposed model had 6.2% and 3.7% more improvement than the two pure CNN models in terms of the AUC, respectively. Therefore, the proposed model is capable of accurately mapping landslide susceptibility and providing a promising method for hazard mitigation and land use planning. Additionally, it is recommended to be applied to other areas of the world.


Symmetry ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 762 ◽  
Author(s):  
Renwei Li ◽  
Nianqin Wang

The main purpose of this study is to apply three bivariate statistical models, namely weight of evidence (WoE), evidence belief function (EBF) and index of entropy (IoE), and their ensembles with logistic regression (LR) for landslide susceptibility mapping in Muchuan County, China. First, a landslide inventory map contained 279 landslides was obtained through the field investigation and interpretation of aerial photographs. Next, the landslides were randomly divided into two parts for training and validation with the ratio of 70/30. In addition, according to the regional geological environment characteristics, twelve landslide conditioning factors were selected, including altitude, plan curvature, profile curvature, slope angle, distance to roads, distance to rivers, topographic wetness index (TWI), normalized different vegetation index (NDVI), land use, soil, and lithology. Subsequently, the landslide susceptibility mapping was carried out by the above models. Eventually, the accuracy of this research was validated by the area under the receiver operating characteristic (ROC) curve and the results indicated that the landslide susceptibility map produced by EBF-LR model has the highest accuracy (0.826), followed by IoE-LR model (0.825), WoE-LR model (0.792), EBF model (0.791), IoE model (0.778), and WoE model (0.753). The results of this study can provide references of landslide prevention and land use planning for local government.


Author(s):  
Desire Kubwimana ◽  
Lahsen Ait Brahim ◽  
Abdellah Abdelouafi

As in other hilly and mountainous regions of the world, the hillslopes of Bujumbura are prone to landslides. In this area, landslides impact human lives and infrastructures. Despite the high landslide-induced damages, slope instabilities are less investigated. The aim of this research is to assess the landslide susceptibility using a probabilistic/statistical data modeling approach for predicting the initiation of future landslides. A spatial landslide inventory with their physical characteristics through interpretation of high-resolution optic imageries/aerial photos and intensive fieldwork are carried out. Base on in-depth field knowledge and green literature, let’s select potential landslide conditioning factors. A landslide inventory map with 568 landslides is produced. Out of the total of 568 landslide sites, 50 % of the data taken before the 2000s is used for training and the remaining 50 % (post-2000 events) were used for validation purposes. A landslide susceptibility map with an efficiency of 76 % to predict future slope failures is generated. The main landslides controlling factors in ascendant order are the density of drainage networks, the land use/cover, the lithology, the fault density, the slope angle, the curvature, the elevation, and the slope aspect. The causes of landslides support former regional studies which state that in the region, landslides are related to the geology with the high rapid weathering process in tropical environments, topography, and geodynamics. The susceptibility map will be a powerful decision-making tool for drawing up appropriate development plans in the hillslopes of Bujumbura with high demographic exposure. Such an approach will make it possible to mitigate the socio-economic impacts due to these land instabilities


2020 ◽  
Vol 12 (1) ◽  
pp. 1440-1467
Author(s):  
Azemeraw Wubalem

AbstractThe study area in northwestern Ethiopia is one of the most landslide-prone regions, which is characterized by frequent high landslide occurrences. To predict future landslide occurrence, preparing a landslide susceptibility mapping is imperative to manage the landslide hazard and reduce damages of properties and loss of lives. Geographic information system (GIS)-based frequency ratio (FR), information value (IV), certainty factor (CF), and logistic regression (LR) methods were applied. The landslide inventory map is prepared from historical records and Google Earth imagery interpretation. Thus, 717 landslides were mapped, of which 502 (70%) landslides were used to build landslide susceptibility models, and the remaining 215 (30%) landslides were used to model validation. Eleven factors such as lithology, land use/cover, distance to drainage, distance to lineament, normalized difference vegetation index, drainage density, rainfall, soil type, slope, aspect, and curvature were evaluated and their relationship with landslide occurrence was analyzed using the GIS tool. Then, landslide susceptibility maps of the study area are categorized into very low, low, moderate, high, and very high susceptibility classes. The four models were validated by the area under the curve (AUC) and landslide density. The results for the AUC are 93.9% for the CF model, which is better than 93.2% using IV, 92.7% using the FR model, and 87.9% using the LR model. Moreover, the statistical significance test between the models was performed using LR analysis by SPSS software. The result showed that the LR and CF models have higher statistical significance than the FR and IV methods. Although all statistical models indicated higher prediction accuracy, based on their statistical significance analysis result (Table 5), the LR model is relatively better followed by the CF model for regional land use planning, landslide hazard mitigation, and prevention purposes.


Author(s):  
K. T. Chang ◽  
J. Dou ◽  
Y. Chang ◽  
C. P. Kuo ◽  
K. M. Xu ◽  
...  

The purposes of this study are to identify the maximum number of correlated factors for landslide susceptibility mapping and to evaluate landslide susceptibility at Sihjhong river catchment in the southern Taiwan, integrating two techniques, namely certainty factor (CF) and artificial neural network (ANN). The landslide inventory data of the Central Geological Survey (CGS, MOEA) in 2004-2014 and two digital elevation model (DEM) datasets including a 5-meter LiDAR DEM and a 30-meter Aster DEM were prepared. We collected thirteen possible landslide-conditioning factors. Considering the multi-collinearity and factor redundancy, we applied the CF approach to optimize these thirteen conditioning factors. We hypothesize that if the CF values of the thematic factor layers are positive, it implies that these conditioning factors have a positive relationship with the landslide occurrence. Therefore, based on this assumption and positive CF values, seven conditioning factors including slope angle, slope aspect, elevation, terrain roughness index (TRI), terrain position index (TPI), total curvature, and lithology have been selected for further analysis. The results showed that the optimized-factors model provides a better accuracy for predicting landslide susceptibility in the study area. In conclusion, the optimized-factors model is suggested for selecting relative factors of landslide occurrence.


2018 ◽  
Vol 20 (1) ◽  
pp. 130-146 ◽  
Author(s):  
Anna–Hajnalka KEREKES ◽  
Szilárd Lehel POSZET ◽  
Andrea GÁL

The administrative territory of Cluj–Napoca, due to its specific geological and geomorphological characteristics and anthropic activities, has been affected for a long time by landslides. Thus, it becomes necessary to analyse affected areas with different spatial methods, with the aim of generating landslide susceptibility maps. In this research, we studied the most prone area of the city, the Becaș stream watershed, situated in the Southern part of the municipality. The aim of this paper is to generate a valid susceptibility map, to be able to raise awareness about the existing situation: due to human induced activities and rapid urban growth, the peripheral part of Cluj–Napoca becomes more and more prone to mass–movements. We used the maximum entropy (MaxEnt) model, which was fed with accurate information on the existing landslides and seven landslide–causing factors: slope, aspect, land–use, depth of fragmentation, geology and plan– and profile curvature. The results confirm that the most influential factors are the land use and slope–angle, affected in a large degree by human activities. The accuracy of the generated map was verified using the AUC method, proving a very good performance (0.844) of the applied model.


2016 ◽  
Vol 50 (1) ◽  
pp. 83-93
Author(s):  
Khagendra Poudel ◽  
Amar Deep Regmi

 The Tulsipur-Kapurkot road is the main highway connecting the northern part of Rapti zone to the rest of Nepal. It suffers from numerous mass movements obstructing the traffic every monsoon. This paper describes the development of landslide susceptibility map of the road section and its surrounding regions based on bivariate (frequency ratio) statistical model. Geologically, the road section passes through the rocks of Lesser Himalaya, Siwaliks and Quaternary deposits. Several large and small scale thrusts present within the area making it unstable. For the susceptibility evaluation of the region, first a landslide inventory map consisting more than 187 landslides was prepared. These landslide locations were then randomly partitioned into a ratio of 80/20 for training and validating the models. Second, nine landslide causative factors were prepared. They include slope, aspect, elevation, curvature, geology, land use, distance from fault, distance from river and distance from major road sections. Finally, a landslide susceptibility map of the region was obtained and it was validated using area under curve (AUC). From the analysis, the success rate of the model is found to be 85.18% and predictive accuracy is 78.76%. The resultant susceptibility map shows that the highway in between Ranagaun to Khamari and Ramri to Kapurkot falls within very high to high susceptible zone. Besides, it is observed that the Kapurkot Bazar is also under high landslide susceptible zone. Furthermore, the northern part of the watershed lies in high landslide susceptible zone. The result of this study is useful for land use planning and decision making in landslide management activities.


2021 ◽  
Author(s):  
Anna Małka

AbstractThis work aims to prepare a reliable landslide susceptibility model and to analyse the factors contributing to landslides in a dynamic environment by considering the city of Gdynia, Poland as a case study. Geological, geomorphological, hydrological, hydrogeological, and anthropogenic predisposing factors are considered using geographic information systems. Ground types at different depths (1 m and 4 m b.g.l.) are used in the statistical susceptibility assessment for the first time. Landslide susceptibility maps are developed using two techniques in presenting landslides, 13 conditioning factors, and three statistical methods: landslide index, weight of evidence, and logistic regression. The considered factors have an influence on mass movement formation, but their roles are different. Many of these passive factors are interrelated and some of them are also related to active factors, i.e. triggers. Consideration of many thematic layers in the statistical approach allows for the selection of the most appropriate geo-environmental variables. The most significant conditioning factors that affect the likelihood of landsliding include land use and land cover as well as topography. The susceptibility maps generated by the index model and many interrelated passive factors appear to be over-predicted. The logistic regression model and only independent controlling factors (slope angle, slope aspect, and lithology) are sufficient to compile a reliable susceptibility map of Gdynia. Prediction rate curve plots show that the susceptibility map produced using logistic regression exhibits the highest prediction accuracy. The results emphasize the need to check independence in the selection of instability factors and the use of an independent subset of landslides for validation.


Sign in / Sign up

Export Citation Format

Share Document