scholarly journals Landslide Susceptibility Mapping Using Machine Learning Algorithms and Remote Sensing Data in a Tropical Environment

Author(s):  
Viet-Ha Nhu ◽  
Ayub Mohammadi ◽  
Himan Shahabi ◽  
Baharin Bin Ahmad ◽  
Nadhir Al-Ansari ◽  
...  

We used AdaBoost (AB), alternating decision tree (ADTree), and their combination as an ensemble model (AB-ADTree) to spatially predict landslides in the Cameron Highlands, Malaysia. The models were trained with a database of 152 landslides compiled using Synthetic Aperture Radar Interferometry, Google Earth images, and field surveys, and 17 conditioning factors (slope, aspect, elevation, distance to road, distance to river, proximity to fault, road density, river density, normalized difference vegetation index, rainfall, land cover, lithology, soil types, curvature, profile curvature, stream power index, and topographic wetness index). We carried out the validation process using the area under the receiver operating characteristic curve (AUC) and several parametric and non-parametric performance metrics, including positive predictive value, negative predictive value, sensitivity, specificity, accuracy, root mean square error, and the Friedman and Wilcoxon sign rank tests. The AB model (AUC = 0.96) performed better than the ensemble AB-ADTree model (AUC = 0.94) and successfully outperformed the ADTree model (AUC = 0.59) in predicting landslide susceptibility. Our findings provide insights into the development of more efficient and accurate landslide predictive models that can be used by decision makers and land-use managers to mitigate landslide hazards.

2020 ◽  
Vol 12 (1) ◽  
pp. 1440-1467
Author(s):  
Azemeraw Wubalem

AbstractThe study area in northwestern Ethiopia is one of the most landslide-prone regions, which is characterized by frequent high landslide occurrences. To predict future landslide occurrence, preparing a landslide susceptibility mapping is imperative to manage the landslide hazard and reduce damages of properties and loss of lives. Geographic information system (GIS)-based frequency ratio (FR), information value (IV), certainty factor (CF), and logistic regression (LR) methods were applied. The landslide inventory map is prepared from historical records and Google Earth imagery interpretation. Thus, 717 landslides were mapped, of which 502 (70%) landslides were used to build landslide susceptibility models, and the remaining 215 (30%) landslides were used to model validation. Eleven factors such as lithology, land use/cover, distance to drainage, distance to lineament, normalized difference vegetation index, drainage density, rainfall, soil type, slope, aspect, and curvature were evaluated and their relationship with landslide occurrence was analyzed using the GIS tool. Then, landslide susceptibility maps of the study area are categorized into very low, low, moderate, high, and very high susceptibility classes. The four models were validated by the area under the curve (AUC) and landslide density. The results for the AUC are 93.9% for the CF model, which is better than 93.2% using IV, 92.7% using the FR model, and 87.9% using the LR model. Moreover, the statistical significance test between the models was performed using LR analysis by SPSS software. The result showed that the LR and CF models have higher statistical significance than the FR and IV methods. Although all statistical models indicated higher prediction accuracy, based on their statistical significance analysis result (Table 5), the LR model is relatively better followed by the CF model for regional land use planning, landslide hazard mitigation, and prevention purposes.


2021 ◽  
Vol 2021 ◽  
pp. 1-19
Author(s):  
Trinh Quoc Ngo ◽  
Nguyen Duc Dam ◽  
Nadhir Al-Ansari ◽  
Mahdis Amiri ◽  
Tran Van Phong ◽  
...  

Landslides are one of the most devastating natural hazards causing huge loss of life and damage to properties and infrastructures and adversely affecting the socioeconomy of the country. Landslides occur in hilly and mountainous areas all over the world. Single, ensemble, and hybrid machine learning (ML) models have been used in landslide studies for better landslide susceptibility mapping and risk management. In the present study, we have used three single ML models, namely, linear discriminant analysis (LDA), logistic regression (LR), and radial basis function network (RBFN), for landslide susceptibility mapping at Pithoragarh district, as these models are easy to apply and so far they have not been used for landslide study in this area. The main objective of this study is to evaluate the performance of these single models for correctly identifying landslide susceptible zones for their further application in other areas. For this, ten important landslide affecting factors, namely, slope, aspect, curvature, elevation, land cover, lithology, geomorphology, distance to rivers, distance to roads, and overburden depth based on the local geoenvironmental conditions, were considered for the modeling. Landslide inventory of past 398 landslide events was used in the development of models. The data of past landslide events (locations) was randomly divided into a 70/30 ratio for training (70%) and validation (30%) of the models. Standard statistical measures, namely, accuracy (ACC), specificity (SPF), sensitivity (SST), positive predictive value (PPV), negative predictive value (NPV), Kappa, root mean square error (RMSE), and area under the receiver operating characteristic curve (AUC), were used to evaluate the performance of the models. Results indicated that the performance of all the models is very good (AUC > 0.90) and that of the LR model is the best (AUC = 0.926). Therefore, these single ML models can be used for the development of accurate landslide susceptibility maps. Our study demonstrated that the single models which are easy to use and can compete with the complex ensemble/hybrid models can be applied for landslide susceptibility mapping in landslide-prone areas.


2020 ◽  
Vol 10 (11) ◽  
pp. 3710 ◽  
Author(s):  
Quoc Cuong Tran ◽  
Duc Do Minh ◽  
Abolfazl Jaafari ◽  
Nadhir Al-Ansari ◽  
Duc Dao Minh ◽  
...  

Development of landslide predictive models with strong prediction power has become a major focus of many researchers. This study describes the first application of the Hyperpipes (HP) algorithm for the development of the five novel ensemble models that combine the HP algorithm and the AdaBoost (AB), Bagging (B), Dagging, Decorate, and Real AdaBoost (RAB) ensemble techniques for mapping the spatial variability of landslide susceptibility in the Nam Dan commune, Ha Giang province, Vietnam. Information on 76 historical landslides and ten geo-environmental factors (slope degree, slope aspect, elevation, topographic wetness index, curvature, weathering crust, geology, river density, fault density, and distance from roads) were used for the construction of the training and validation datasets that are the prerequisites for building and testing the proposed models. Using different performance metrics (i.e., the area under the receiver operating characteristic curve (AUC), negative predictive value, positive predictive value, accuracy, sensitivity, specificity, root mean square error, and Kappa), we verified the proficiency of all five ensemble learning techniques in increasing the fitness and predictive powers of the base HP model. Based on the AUC values derived from the models, the ensemble ABHP model that yielded an AUC value of 0.922 was identified as the most efficient model for mapping the landslide susceptibility in the Nam Dan commune, followed by RABHP (AUC = 0.919), BHP (AUC = 0.909), Dagging-HP (AUC = 0.897), Decorate-HP (AUC = 0.865), and the single HP model (AUC = 0.856), respectively. The novel ensemble models proposed for the Nam Dan commune and the resultant susceptibility maps can aid land-use planners in the development of efficient mitigation strategies in response to destructive landslides.


2020 ◽  
Vol 26 (2) ◽  
pp. 185-200
Author(s):  
Said Benchelha ◽  
Hasnaa Chennaoui Aoudjehane ◽  
Mustapha Hakdaoui ◽  
Rachid El Hamdouni ◽  
Hamou Mansouri ◽  
...  

ABSTRACT Landslide susceptibility indices were calculated and landslide susceptibility maps were generated for the Oudka, Morocco, study area using a geographic information system. The spatial database included current landslide location, topography, soil, hydrology, and lithology, and the eight factors related to landslides (elevation, slope, aspect, distance to streams, distance to roads, distance to faults, lithology, and Normalized Difference Vegetation Index [NDVI]) were calculated or extracted. Logistic regression (LR), multivariate adaptive regression spline (MARSpline), and Artificial Neural Networks (ANN) were the methods used in this study to generate landslide susceptibility indices. Before the calculation, the study area was randomly divided into two parts, the first for the establishment of the model and the second for its validation. The results of the landslide susceptibility analysis were verified using success and prediction rates. The MARSpline model gave a higher success rate (AUC (Area Under The Curve) = 0.963) and prediction rate (AUC = 0.951) than the LR model (AUC = 0.918 and AUC = 0.901) and the ANN model (AUC = 0.886 and AUC = 0.877). These results indicate that the MARSpline model is the best model for determining landslide susceptibility in the study area.


2021 ◽  
Vol 33 ◽  
Author(s):  
Mohammed El-Fengour ◽  
Hanifa El Motaki ◽  
Aissa El Bouzidi

This study aimed to assess landslide susceptibility in the Sahla watershed in northern Morocco. Landslides hazard is the most frequent phenomenon in this part of the state due to its mountainous precarious environment. The abundance of rainfall makes this area suffer mass movements led to a notable adverse impact on the nearby settlements and infrastructures. There were 93 identified landslide scars. Landslide inventories were collected from Google Earth image interpretations. They were prepared out of landslide events in the past, and future landslide occurrence was predicted by correlating landslide predisposing factors. In this paper, landslide inventories are divided into two groups, one for landslide training and the other for validation. The Landslide Susceptibility Map (LSM) is prepared by Logistic Regression (LR) Statistical Method. Lithology, stream density, land use, slope curvature, elevation, topographic wetness index, slope aspect, and slope angle were used as conditioning factors. The Area Under the Curve (AUC) of the Receiver Operating Characteristic (ROC) was employed to examine the performance of the model. In the analysis, the LR model results in 96% accuracy in the AUC. The LSM consists of the predicted landslide area. Hence it can be used to reduce the potential hazard linked with the landslides in the Sahla watershed area in Rif Mountains in northern Morocco.


Water ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 1402 ◽  
Author(s):  
Nohani ◽  
Moharrami ◽  
Sharafi ◽  
Khosravi ◽  
Pradhan ◽  
...  

Landslides are the most frequent phenomenon in the northern part of Iran, which cause considerable financial and life damages every year. One of the most widely used approaches to reduce these damages is preparing a landslide susceptibility map (LSM) using suitable methods and selecting the proper conditioning factors. The current study is aimed at comparing four bivariate models, namely the frequency ratio (FR), Shannon entropy (SE), weights of evidence (WoE), and evidential belief function (EBF), for a LSM of Klijanrestagh Watershed, Iran. Firstly, 109 locations of landslides were obtained from field surveys and interpretation of aerial photographs. Then, the locations were categorized into two groups of 70% (74 locations) and 30% (35 locations), randomly, for modeling and validation processes, respectively. Then, 10 conditioning factors of slope aspect, curvature, elevation, distance from fault, lithology, normalized difference vegetation index (NDVI), distance from the river, distance from the road, the slope angle, and land use were determined to construct the spatial database. From the results of multicollinearity, it was concluded that no collinearity existed between the 10 considered conditioning factors in the occurrence of landslides. The receiver operating characteristic (ROC) curve and the area under the curve (AUC) were used for validation of the four achieved LSMs. The AUC results introduced the success rates of 0.8, 0.86, 0.84, and 0.85 for EBF, WoE, SE, and FR, respectively. Also, they indicated that the rates of prediction were 0.84, 0.83, 0.82, and 0.79 for WoE, FR, SE, and EBF, respectively. Therefore, the WoE model, having the highest AUC, was the most accurate method among the four implemented methods in identifying the regions at risk of future landslides in the study area. The outcomes of this research are useful and essential for the government, planners, decision makers, researchers, and general land-use planners in the study area.


2019 ◽  
Vol 11 (1) ◽  
pp. 708-726
Author(s):  
Zorgati Anis ◽  
Gallala Wissem ◽  
Vakhshoori Vali ◽  
Habib Smida ◽  
Gaied Mohamed Essghaier

AbstractThe Tunisian North-western region, especially Tabarka and Ain-Drahim villages, presents many landslides every year. Therefore, the landslide susceptibility mapping is essential to frame zones with high landslide susceptibility, to avoid loss of lives and properties. In this study, two bivariate statistical models: the evidential belief functions (EBF) and the weight of evidence (WoE), were used to produce landslide susceptibility maps for the study area. For this, a landslide inventory map was mapped using aerial photo, satellite image and extensive field survey. A total of 451 landslides were randomly separated into two datasets: 316 landslides (70%) for modelling and 135 landslides (30%) for validation. Then, 11 landslide conditioning factors: elevation, slope, aspect, lithology, rainfall, normalized difference vegetation index (NDVI), land cover/use, plan curvature, profile curvature, distance to faults and distance to drainage networks, were considered for modelling. The EBF and WoE models were well validated using the Area Under the Receiver Operating Characteristic (AUROC) curve with a success rate of 87.9% and 89.5%, respectively, and a predictive rate of 84.8% and 86.5%, respectively. The landslide susceptibility maps were very similar by the two models, but the WoE model is more efficient and it can be useful in future planning for the current study area.


Sensors ◽  
2019 ◽  
Vol 19 (16) ◽  
pp. 3590 ◽  
Author(s):  
Bui ◽  
Moayedi ◽  
Kalantar ◽  
Osouli ◽  
Gör ◽  
...  

In this research, the novel metaheuristic algorithm Harris hawks optimization (HHO) is applied to landslide susceptibility analysis in Western Iran. To this end, the HHO is synthesized with an artificial neural network (ANN) to optimize its performance. A spatial database comprising 208 historical landslides, as well as 14 landslide conditioning factors—elevation, slope aspect, plan curvature, profile curvature, soil type, lithology, distance to the river, distance to the road, distance to the fault, land cover, slope degree, stream power index (SPI), topographic wetness index (TWI), and rainfall—is prepared to develop the ANN and HHO–ANN predictive tools. Mean square error and mean absolute error criteria are defined to measure the performance error of the models, and area under the receiving operating characteristic curve (AUROC) is used to evaluate the accuracy of the generated susceptibility maps. The findings showed that the HHO algorithm effectively improved the performance of ANN in both recognizing (AUROCANN = 0.731 and AUROCHHO–ANN = 0.777) and predicting (AUROCANN = 0.720 and AUROCHHO–ANN = 0.773) the landslide pattern.


2021 ◽  
Author(s):  
Md. Sharafat Chowdhury ◽  
Bibi Hafsa

Abstract This study attempts to produce Landslide Susceptibility Map for Chattagram District of Bangladesh by using five GIS based bivariate statistical models, namely the Frequency Ratio (FR), Shanon’s Entropy (SE), Weight of Evidence (WofE), Information Value (IV) and Certainty Factor (CF). A secondary landslide inventory database was used to correlate the previous landslides with the landslide conditioning factors. Sixteen landslide conditioning factors of Slope Aspect, Slope Angle, Geology, Elevation, Plan Curvature, Profile Curvature, General Curvature, Topographic Wetness Index, Stream Power Index, Sediment Transport Index, Topographic Roughness Index, Distance to Stream, Distance to Anticline, Distance to Fault, Distance to Road and NDVI were used. The Area Under Curve (AUC) was used for validation of the LSMs. The predictive rate of AUC for FR, SE, WofE, IV and CF were 76.11%, 70.11%, 78.93%, 76.57% and 80.43% respectively. CF model indicates 15.04% of areas are highly susceptible to landslide. All the models showed that the high elevated areas are more susceptible to landslide where the low-lying river basin areas have a low probability of landslide occurrence. The findings of this research will contribute to land use planning, management and hazard mitigation of the CHT region.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Pawan Gautam ◽  
Tetsuya Kubota ◽  
Aril Aditian

AbstractThe main objective of this study is to understand the overall impact of earthquake in upper Indrawati Watershed, located in the high mountainous region of Nepal. Hence, we have assessed the relationship between the co-seismic landslide and underlying causative factors as well as performed landslide susceptibility mapping (LSM) to identify the landslide susceptible zone in the study area. We assessed the landslides distribution in terms of density, number, and area within 85 classes of 13 causal factors including slope, aspect, elevation, formation, land cover, distance to road and river, soil type, total curvature, seismic intensity, topographic wetness index, distance to fault, and flow accumulation. The earthquake-induced landslide is clustered in Northern region of the study area, which is dominated by steep rocky slope, forested land, and low human density. Among the causal factors, 'slope' showed positive correlation for landslide occurrence. Increase in slope in the study area also escalates the landslide distribution, with highest density at 43%, landslide number at 4.34/km2, and landslide area abundance at 2.97% in a slope class (> 50°). We used logistic regression (LR) for LSM integrating with geographic information system. LR analysis depicts that land cover is the best predictor followed by slope and distance to fault with higher positive coefficient values. LSM was validated by assessing the correctly classified landslides under susceptibility categories using area under curve (AUC) and seed cell area index (SCAI). The LSM approach showed good accuracy with respective AUC values for success rate and prediction rate of 0.843 and 0.832. Similarly, the decreasing SCAI value from very low to very high susceptibility categories advise satisfactory accuracy of the LSM approach.


Sign in / Sign up

Export Citation Format

Share Document