scholarly journals Power Saving MAC Protocols for Wireless Body Area Networks (WBANs)

Author(s):  
Kheesheshta Ramgoolam ◽  
Vandana Bassoo

Abstract Two important criteria of Wireless Body Area Networks (WBANs) are low power consumption and delay. These criteria can be met by designing efficient Medium Access Control (MAC) protocols. In this paper, two TDMA-based MAC protocols are proposed. The first protocol, TM-MAC makes use of only a main radio. The second proposed protocol, TWM-MAC makes use of a WUR alongside the main radio. The two proposed protocols are compared with different categories of standard MAC protocols and it is shown that they outperform the standard ones by improving the power consumption and delay. The TWM-MAC consumes 55% less power consumption than the Scheduled Channel Polling MAC (SCP-MAC) protocol for a high traffic scenario on the high-rate platform while the TM-MAC consumes 85% less power consumption than the SCP-MAC. For a low traffic scenario, the TWM-MAC performs 53.5% better than the SCP-MAC protocol and 77.5% better than the Very Low Power MAC (VLPM) protocol on the high and low-rate platforms respectively. An improvement in delay was observed with the TWM-MAC protocol for high traffic situations. The TWM-MAC protocol surpasses the VLPM protocol by 81.1% in terms of latency for a high traffic scenario and 3.2% for a low traffic scenario.

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Kumar Neeraj ◽  
Mohammed Mahaboob Basha ◽  
Srinivasulu Gundala

Purpose Smart ubiquitous sensors have been deployed in wireless body area networks to improve digital health-care services. As the requirement for computing power has drastically increased in recent years, the design of low power static RAM-based ubiquitous sensors is highly required for wireless body area networks. However, SRAM cells are increasingly susceptible to soft errors due to short supply voltage. The main purpose of this paper is to design a low power SRAM- based ubiquitous sensor for healthcare applications. Design/methodology/approach In this work, bias temperature instabilities are identified as significant issues in SRAM design. A level shifter circuit is proposed to get rid of soft errors and bias temperature instability problems. Findings Bias Temperature Instabilities are focused on in recent SRAM design for minimizing degradation. When compared to the existing SRAM design, the proposed FinFET-based SRAM obtains better results in terms of latency, power and static noise margin. Body area networks in biomedical applications demand low power ubiquitous sensors to improve battery life. The proposed low power SRAM-based ubiquitous sensors are found to be suitable for portable health-care devices. Originality/value In wireless body area networks, the design of low power SRAM-based ubiquitous sensors are highly essential. This design is power efficient and it overcomes the effect of bias temperature instability.


2012 ◽  
Vol 3 (2) ◽  
pp. 51-61
Author(s):  
A. Punitha ◽  
Sujin P. Jose

The authors provide an extensive survey of recent energy-efficient and contention based medium access control (MAC) protocols for wireless body area networks (WBANs). They briefed the crucial applications of WBAN in present scenario and also discussed low-power and contention based MAC protocols for medical and consumer electronics. The authors outlined the future applications of WBAN and the enhancement to be incorporated to improve the efficiency of WBAN systems.


Sign in / Sign up

Export Citation Format

Share Document