scholarly journals Using a new HSPC aging model in vitro to explore the mechanism of cellular memory in aging HSPCs

Author(s):  
Yongpin Dong ◽  
Wenfang Li ◽  
Wuxiong Zhou ◽  
Lina Zhang

Abstract Age-associated changes attenuate human blood system functionality through the aging of hematopoietic stem and progenitor cells (HSPCs). Hematopoietic aging is manifested in human populations in the form of an increase in myeloproliferative disease,therefore, study on hematopoietic stem and progenitor cells (HSPCs) senescence bears great significance to treat hematopoietic associated disease. However, the mechanism of HSPC aging is lacking, especially cellular memory mechanism. Here, we not only reported a new HSPC aging model in vitro, but also propose and verify the cellular memory mechanism of HSPC aging of Polycomb/Trithorax system. In this model cells, the senescence-related β-gal activity, cell cycle, colony-forming ability, aging-related cell morphology and metabolic pathway are significantly changed compare to the young group. Furthermore, we found the model HSPCs have more obvious aging manifestation than those of natural mice and IL3 is the major factor contributing to HSPC aging in the model. We also observed dramatically changes in the expression level of PRC/TrxG complexes. We further identified downstream molecules of PRC/TrxG complexes,Uhrf1 and TopII, which were found to play a critical role in HSPC aging based on the HSPC aging model. So, these findings proposed a new aging HSPC model in vitro which we forecasted could be used to preliminary screen the drugs of the HSPC aging related hemopathy and suggested cellular memory mechanism of HSPC aging.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yongpin Dong ◽  
Chunni Guo ◽  
Wuxiong Zhou ◽  
Wenfang Li ◽  
Lina Zhang

Abstract Background Age-associated changes attenuate human blood system functionality through the aging of hematopoietic stem and progenitor cells (HSPCs), manifested in human populations an increase in myeloproliferative disease and even leukemia; therefore, study on HSPC senescence bears great significance to treat hematopoietic-associated disease. Furthermore, the mechanism of HSPC aging is lacking, especially the cellular memory mechanism. Here, we not only reported a new HSPC senescence model in vitro, but also propose and verify the cellular memory mechanism of HSPC aging of the Polycomb/Trithorax system. Methods HSPCs (Lin−c-kit+ cells) were isolated and purified by magnetic cell sorting (MACS). The proportions and cell cycle distribution of cells were determined by flow cytometry; senescence-related β-galactosidase assay, transmission electron microscope (TEM), and colony-forming unit (CFU)-mix assay were detected for identification of the old HSPC model. Proteomic tests and RNA-seq were applied to analyze differential pathways and genes in the model cells. qPCR, Western blot (WB), and chromatin immunoprecipitation PCR (CHIP-PCR) were used to detect the gene expression of cell memory-related proteins. Knockdown of cell memory-related key genes was performed with shRNA interference. Results In the model old HSPCs, β-gal activity, cell cycle, colony-forming ability, aging-related cell morphology, and metabolic pathway were significantly changed compared to the young HSPCs. Furthermore, we found the model HSPCs have more obvious aging manifestations than those of natural mice, and IL3 is the major factor contributing to HSPC aging in the model. We also observed dramatic changes in the expression level of PRC/TrxG complexes. After further exploring the downstream molecules of PRC/TrxG complexes, we found that Uhrf1 and TopII played critical roles in HSPC aging based on the HSPC senescence model. Conclusions These findings proposed a new HSPC senescence model in vitro which we forecasted could be used to preliminary screen the drugs of the HSPC aging-related hemopathy and suggested cellular memory mechanism of HSPC aging.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Brianna J. Klein ◽  
Anagha Deshpande ◽  
Khan L. Cox ◽  
Fan Xuan ◽  
Mohamad Zandian ◽  
...  

AbstractChromosomal translocations of the AF10 (or MLLT10) gene are frequently found in acute leukemias. Here, we show that the PZP domain of AF10 (AF10PZP), which is consistently impaired or deleted in leukemogenic AF10 translocations, plays a critical role in blocking malignant transformation. Incorporation of functional AF10PZP into the leukemogenic CALM-AF10 fusion prevents the transforming activity of the fusion in bone marrow-derived hematopoietic stem and progenitor cells in vitro and in vivo and abrogates CALM-AF10-mediated leukemogenesis in vivo. Crystallographic, biochemical and mutagenesis studies reveal that AF10PZP binds to the nucleosome core particle through multivalent contacts with the histone H3 tail and DNA and associates with chromatin in cells, colocalizing with active methylation marks and discriminating against the repressive H3K27me3 mark. AF10PZP promotes nuclear localization of CALM-AF10 and is required for association with chromatin. Our data indicate that the disruption of AF10PZP function in the CALM-AF10 fusion directly leads to transformation, whereas the inclusion of AF10PZP downregulates Hoxa genes and reverses cellular transformation. Our findings highlight the molecular mechanism by which AF10 targets chromatin and suggest a model for the AF10PZP-dependent CALM-AF10-mediated leukemogenesis.


Author(s):  
Omika Katoch ◽  
Mrinalini Tiwari ◽  
Namita Kalra ◽  
Paban K. Agrawala

AbstractDiallyl sulphide (DAS), the pungent component of garlic, is known to have several medicinal properties and has recently been shown to have radiomitigative properties. The present study was performed to better understand its mode of action in rendering radiomitigation. Evaluation of the colonogenic ability of hematopoietic progenitor cells (HPCs) on methocult media, proliferation and differentiation of hematopoietic stem cells (HSCs), and transplantation of stem cells were performed. The supporting tissue of HSCs was also evaluated by examining the histology of bone marrow and in vitro colony-forming unit–fibroblast (CFU-F) count. Alterations in the levels of IL-5, IL-6 and COX-2 were studied as a function of radiation or DAS treatment. It was observed that an increase in proliferation and differentiation of hematopoietic stem and progenitor cells occurred by postirradiation DAS administration. It also resulted in increased circulating and bone marrow homing of transplanted stem cells. Enhancement in bone marrow cellularity, CFU-F count, and cytokine IL-5 level were also evident. All those actions of DAS that could possibly add to its radiomitigative potential and can be attributed to its HDAC inhibitory properties, as was observed by the reversal radiation induced increase in histone acetylation.


Blood ◽  
2007 ◽  
Vol 110 (7) ◽  
pp. 2399-2407 ◽  
Author(s):  
Hong Qian ◽  
Elisabeth Georges-Labouesse ◽  
Alexander Nyström ◽  
Anna Domogatskaya ◽  
Karl Tryggvason ◽  
...  

Homing of hematopoietic stem cells (HSCs) into the bone marrow (BM) is a prerequisite for establishment of hematopoiesis during development and following transplantation. However, the molecular interactions that control homing of HSCs, in particular, of fetal HSCs, are not well understood. Herein, we studied the role of the α6 and α4 integrin receptors for homing and engraftment of fetal liver (FL) HSCs and hematopoietic progenitor cells (HPCs) to adult BM by using integrin α6 gene–deleted mice and function-blocking antibodies. Both integrins were ubiquitously expressed in FL Lin−Sca-1+Kit+ (LSK) cells. Deletion of integrin α6 receptor or inhibition by a function-blocking antibody inhibited FL LSK cell adhesion to its extracellular ligands, laminins-411 and -511 in vitro, and significantly reduced homing of HPCs to BM. In contrast, the anti-integrin α6 antibody did not inhibit BM homing of HSCs. In agreement with this, integrin α6 gene–deleted FL HSCs did not display any homing or engraftment defect compared with wild-type littermates. In contrast, inhibition of integrin α4 receptor by a function-blocking antibody virtually abrogated homing of both FL HSCs and HPCs to BM, indicating distinct functions for integrin α6 and α4 receptors during homing of fetal HSCs and HPCs.


2011 ◽  
Vol 193 (3) ◽  
pp. i7-i7
Author(s):  
Yuhong Chen ◽  
Mei Yu ◽  
Xuezhi Dai ◽  
Mark Zogg ◽  
Renren Wen ◽  
...  

1998 ◽  
Vol 21 (6_suppl) ◽  
pp. 1-10
Author(s):  
C. Carlo-Stella ◽  
V. Rizzoli

Mobilized peripheral blood progenitor cells (PBPC) are increasingly used to reconstitute hematopoiesis in patients undergoing high-dose chemoradiotherapy. PBPC collections comprise a heterogeneous population containing both committed progenitors and pluripotent stem cells and can be harvested (i) in steady state, (ii) after chemotherapeutic conditioning, (iii) growth factor priming, or (iv) both. The use of PBPC has opened new therapeutic perspectives mainly related to the availability of large amounts of mobilized hematopoietic stem and progenitor cells. Extensive manipulation of the grafts, including the possibility of exploiting these cells as vehicles for gene therapy strategies, are now possible and will be reviewed.


Blood ◽  
2002 ◽  
Vol 99 (1) ◽  
pp. 15-23 ◽  
Author(s):  
James C. Mulloy ◽  
Jörg Cammenga ◽  
Karen L. MacKenzie ◽  
Francisco J. Berguido ◽  
Malcolm A. S. Moore ◽  
...  

The acute myelogenous leukemia–1 (AML1)–ETO fusion protein is generated by the t(8;21), which is found in 40% of AMLs of the French-American-British M2 subtype. AML1-ETO interferes with the function of the AML1 (RUNX1, CBFA2) transcription factor in a dominant-negative fashion and represses transcription by binding its consensus DNA–binding site and via protein-protein interactions with other transcription factors. AML1 activity is critical for the development of definitive hematopoiesis, and haploinsufficiency of AML1 has been linked to a propensity to develop AML. Murine experiments suggest that AML1-ETO expression may not be sufficient for leukemogenesis; however, like the BCR-ABL isoforms, the cellular background in which these fusion proteins are expressed may be critical to the phenotype observed. Retroviral gene transfer was used to examine the effect of AML1-ETO on the in vitro behavior of human hematopoietic stem and progenitor cells. Following transduction of CD34+ cells, stem and progenitor cells were quantified in clonogenic assays, cytokine-driven expansion cultures, and long-term stromal cocultures. Expression of AML1-ETO inhibited colony formation by committed progenitors, but enhanced the growth of stem cells (cobblestone area-forming cells), resulting in a profound survival advantage of transduced over nontransduced cells. AML1-ETO–expressing cells retained progenitor activity and continued to express CD34 throughout the 5-week long-term culture. Thus, AML1-ETO enhances the self-renewal of pluripotent stem cells, the physiological target of many acute myeloid leukemias.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 1293-1293
Author(s):  
Hong Qian ◽  
Sten Eirik W. Jacobsen ◽  
Marja Ekblom

Abstract Within the bone marrow environment, adhesive interactions between stromal cells and extracellular matrix molecules are required for stem and progenitor cell survival, proliferation and differentiation as well as their transmigration between bone marrow (BM) and the circulation. This regulation is mediated by cell surface adhesion receptors. In experimental mouse stem cell transplantation models, several classes of cell adhesion receptors have been shown to be involved in the homing and engraftment of stem and progenitor cells in BM. We have previously found that integrin a6 mediates human hematopoietic stem and progenitor cell adhesion to and migration on its specific ligands, laminin-8 and laminin-10/11 in vitro (Gu et al, Blood, 2003; 101:877). Using FACS analysis, the integrin a6 chain was now found to be ubiquitously (>95%) expressed in mouse hematopoietic stem and progenitor cells (lin−Sca-1+c-Kit+, lin−Sca-1+c-Kit+CD34+) both in adult bone marrow and in fetal liver. In vitro, about 70% of mouse BM lin−Sca-1+c-Kit+ cells adhered to laminin-10/11 and 40% adhered to laminin-8. This adhesion was mediated by integrin a6b1 receptor, as shown by functional blocking monoclonal antibodies. We also used a functional blocking monoclonal antibody (GoH3) against integrin a6 to analyse the role of the integrin a6 receptor for the in vivo homing of hematopoietic stem and progenitor cells. We found that the integrin a6 antibody inhibited the homing of bone marrow progenitors (CFU-C) into BM of lethally irradiated recipients. The number of homed CFU-C was reduced by about 40% as compared to cells incubated with an isotype matched control antibody. To study homing of long-term repopulating stem cells (LTR), antibody treated bone marrow cells were first injected intravenously into lethally irradiated primary recipients. After three hours, bone marrow cells of the primary recipients were analysed by competitive repopulation assay in secondary recipients. Blood analysis 16 weeks after transplantation revealed an 80% reduction of stem cell activity of integrin a6 antibody treated cells as compared to cells treated with control antibody. These results suggest that integrin a6 plays an important role for hematopoietic stem and progenitor cell homing in vivo.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 1387-1387
Author(s):  
Hong Qian ◽  
Sten Eirik W. Jacobsen ◽  
Marja Ekblom

Abstract Homing of transplanted hematopoietic stem cells (HSC) in the bone marrow (BM) is a prerequisite for establishment of hematopoiesis following transplantation. However, although multiple adhesive interactions of HSCs with BM microenviroment are thought to critically influence their homing and subsequently their engraftment, the molecular pathways that control the homing of transplanted HSCs, in particular, of fetal HSCs are still not well understood. In experimental mouse stem cell transplantation models, several integrins have been shown to be involved in the homing and engraftment of both adult and fetal stem and progenitor cells in BM. We have previously found that integrin a6 mediates human hematopoietic stem and progenitor cell adhesion to and migration on its specific ligands, laminin-8 and laminin-10/11 in vitro (Gu et al, Blood, 2003; 101:877). Furthermore, integrin a6 is required for adult mouse HSC homing to BM in vivo (Qian et al., Abstract American Society of Hematology, Blood 2004 ). We have now found that the integrin a6 chain like in adult HSC is ubiquitously (>99%) expressed also in fetal liver hematopoietic stem and progenitor cells (lin−Sca-1+c-Kit+, LSK ). In vitro, fetal liver LSK cells adhere to laminin-10/11 and laminin-8 in an integrin a6b1 receptor-dependent manner, as shown by function blocking monoclonal antibodies. We have now used a function blocking monoclonal antibody (GoH3) against integrin a6 to analyse the role of the integrin a6 receptor for the in vivo homing of fetal liver hematopoietic stem and progenitor cells to BM. The integrin a6 antibody inhibited homing of fetal liver progenitors (CFU-C) into BM of lethally irradiated recipients. The number of homed CFU-C in BM was reduced by about 40% as compared to the cells incubated with an isotype matched control antibody. To study homing of long-term repopulating stem cells, BM cells were first incubated with anti-integrin alpha 6 or anti-integrin alpha 4 or control antibody, and then injected intravenously into lethally irradiated primary recipients. After three hours, BM cells of the primary recipients were analysed by competitive repopulation assay in secondary recipients. Blood analysis up to 16 weeks after transplantation showed that no reduction of stem cell reconstitution from integrin a6 antibody treated cells as compared to cells treated with control antibody. In accordance with this, fetal liver HSC from integrin a6 gene deleted embryos did not show any impairment of homing and engraftment in BM as compared to normal littermates. These results suggest that integrin a6 plays an important developmentally regulated role for homing of distinct hematopoietic stem and progenitor cell populations in vivo.


Sign in / Sign up

Export Citation Format

Share Document