scholarly journals Human Delta Like 1-Expressing Human Mesenchymal Stem Cells Promote Human T Cell Development and Antigen-Specific Response in Humanized NOD/SCID/IL-2Rgnull (NSG) Mice

Author(s):  
Ki-Young Lee ◽  
Do Hee Kwon ◽  
Jae Berm Park ◽  
Joo Sang Lee ◽  
Sung Joo Kim ◽  
...  

Abstract Human delta-like 1 (hDlk1) is known to be able to regulate cell fate decisions duringhematopoiesis. Mesenchymal stem cells (MSCs) are known to exhibit potentimmunomodulatory roles in a variety of diseases. Herein, we investigated in vivofunctions of hDlkl1-hMSCs and hDlk1+hMSCs in T cell development and T cell responseto viral infection in humanized NOD/SCID/IL-2Rγnull (NSG) mice. Co-injection ofhDlk1-hMSC with hCD34+ cord blood (CB) cells into the liver of NSG mice markedlysuppressed the development of human T cells. In contrast, co-injection of hDlk1+hMSCwith hCD34+ CB cells into the liver of NSG dramatically promoted the development ofhuman T cells. Human T cells developed in humanized NSG mice represent markedlydiverse in terms of TCR Vβ usages, functionally active, and the restriction to human MHCmolecules. Upon challenge with Epstein-Barr virus (EBV), EBV-specific hCD8+ T cellsin humanized NSG mic were effectively mounted with phenotypically activated T cellspresented as hCD45+hCD3+hCD8+hCD45RO+hHLA-DR+ T cells, suggesting thatantigen-specific T cell response was induced in the humanized NSG mice. Taken together,our data suggest that the hDlk1-expressing MSCs can effectively promote thedevelopment of human T cells and immune response to exogenous antigen in humanizedNSG mice. Thus, the humanized NSG model might have potential advantages for thedevelopment of therapeutics targeting infectious diseases in the future.

Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 3572-3572
Author(s):  
Brile Chung ◽  
Dullei Min ◽  
Mark Krampf ◽  
Won Jong Ju ◽  
Kenneth I. Weinberg

Abstract The ability of the thymus to generate T cells diminishes with increasing age, the use of chemotherapy, bone marrow transplantation (BMT), anti-retroviral therapy for HIV, and graft-versus-host disease (GVHD) which can lead to a major clinical problem. Therefore, developing a clinically relevant strategy for the rapid development of T lymphocytes is crucial for treating immune deficiency. Stem cell factor (SCF: also known as kit ligand) and interleukin-7 (IL-7) are stroma–derived cytokines that induce proliferation, differentiation, and survival of developing immature T cells in the thymus. Studies have shown that administration of recombinant human IL-7 following murine BMT resulted in improved thymopoiesis and immune function. However, our previous studies have shown that that IL-7 treatment post-HSCT to enhance immune reconstitution in the allogeneic setting may have adverse effects because of the dual role of IL-7 in supporting both thymopoiesis and mature T lymphocyte expansion. Therefore it raises the question of whether IL-7 treatment after allogeneic BMT will increase the frequency or severity of GVHD. The purpose of this study was to examine whether: administration of IL-7 and SCF with infusion of mature T cell depleted (TCD) BM cells can induce enhancement of donor-derived immune reconstitution more rapidly than treatment with either cytokine alone and whether IL-7 and SCF are synergistic and partially complementary signals for the proliferation, survival, and differentiation of immature T cells. To evaluate the combinatory effect of IL-7 and SCF in T cell development following BMT, we developed a gene therapy approach using retrovirally-mediated transduction of BM-derived mesenchymal stem cells (MSC) with the human IL-7 or murine SCF gene (soluble isoform). C57BL/6J (CD45.2) recipient mice were irradiated (1300 cGy) and co-transplanted with 1 × 10 6 T cell depleted (TCD) bone marrow cells from congenic donor B6.SJL mice (CD45.1) and different doses (0.1 × 10 6 or 0.3 × 10 6) of eGFP (control), IL-7, SCF, or combination of IL-7 and SCF MSC. At day 30 following BMT, we observed that transplantation of both IL-7 and SCF MSC resulted in significantly higher numbers of donor-derived thymocytes and peripheral lymphocytes than either IL-7 or SCF MSC transplantation alone. Most noticeably, the number of donor-derived immature and mature T cells recovered from the animals receiving transplantation of 0.1 × 10 6 IL-7 MSC and 0.3 × 10 6 SCF MSC was similar to that of animals receiving 0.3 × 10 6 IL-7 MSC alone, demonstrating that the reduced proliferative signals produced by 0.1 × 10 6 IL-7 MSC can be compensated by co-transplantation of 0.3 × 10 6 SCF MSC. Moreover, transplantation of IL-7 and SCF MSC significantly increased the number of donor-derived common lymphoid progenitors (CLP [Lin-, Sca-1 low, Thy1-, c-Kit low, IL-7R+]) in the BM, suggesting that transplanted CLPs are induced to differentiate or expand more rapidly in response to IL-7 and SCF and may have contributed to increased immune reconstitution. Collectively, our findings demonstrate that IL-7 and SCF gene therapy may be a therapeutically useful method to promote enhancement of T cell development in de novo. Furthermore, the experiments resulted in important knowledge about complementary signals provided between IL-7 and SCF, and suggest various doses of IL-7 and SCF therapy may enhance development of T cells with limited expansion of mature T cells responsible for causing GVHD in allogeneic BMT setting.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Do Hee Kwon ◽  
Jae Berm Park ◽  
Joo Sang Lee ◽  
Sung Joo Kim ◽  
Bongkum Choi ◽  
...  

AbstractHuman delta-like 1 (hDlk1) is known to be able to regulate cell fate decisions during hematopoiesis. Mesenchymal stromal cells (MSCs) are known to exhibit potent immunomodulatory roles in a variety of diseases. Herein, we investigated in vivo functions of hDlk1-hMSCs and hDlk1+hMSCs in T cell development and T cell response to viral infection in humanized NOD/SCID/IL-2Rγnull (NSG) mice. Co-injection of hDlk1-hMSC with hCD34+ cord blood (CB) cells into the liver of NSG mice markedly suppressed the development of human T cells. In contrast, co-injection of hDlk1+hMSC with hCD34+ CB cells into the liver of NSG dramatically promoted the development of human T cells. Human T cells developed in humanized NSG mice represent markedly diverse, functionally active, TCR V$$\upbeta $$ β usages, and the restriction to human MHC molecules. Upon challenge with Epstein-Barr virus (EBV), EBV-specific hCD8+ T cells in humanized NSG mice were effectively mounted with phenotypically activated T cells presented as hCD45+hCD3+hCD8+hCD45RO+hHLA-DR+ T cells, suggesting that antigen-specific T cell response was induced in the humanized NSG mice. Taken together, our data suggest that the hDlk1-expressing MSCs can effectively promote the development of human T cells and immune response to exogenous antigen in humanized NSG mice. Thus, the humanized NSG model might have potential advantages for the development of therapeutics targeting infectious diseases in the future.


1989 ◽  
Vol 44 (S1) ◽  
pp. 43-47 ◽  
Author(s):  
Jack L. Strominger ◽  
Marina Fabbi ◽  
Margaret Prendergast ◽  
Richard T. Maziarz ◽  
Steven J. Burakoff ◽  
...  

Author(s):  
Muhammad Sadeqi Nezhad

CAR-T cell therapy has been increasingly conducted for cancer patients in clinical settings. Progress in this therapeutic approach is hampered by the lack of a solid manufacturing process, T lymphocytes, and tumor-specific antigens. T-cell source used in CAR-T cell therapy is predominantly derived from the patient’s own T lymphocytes, which makes this approach impracticable to patients with progressive diseases and T leukemia. Autologous CAR-T cell generation is time-consuming due to lack of readily available T lymphocytes and is not applicable for third-party patients. Pluripotent stem cells, such as human induced pluripotent stem cells (hiPSCs), could provide an unlimited T-cell source for CAR-T cell development. iPSC-derived T cells would be a promising infinite T-cell source and are phenotypically defined, expandable and functional as physiological T cells. iPSC-derived T cells provide a feasible T-cell source for the development of off-the-shelf T cells and CAR-T cells. The combination of iPSC and CAR technologies provides an extraordinary opportunity to oncology and greatly facilitates cell-based therapy for cancer patients. T-iPSCs in combination with CAR is in early stage of development and the pre-clinical and clinical studies concerning the combination of these novel technologies are not sufficient. This article critically reviews the progress in iPSC-derived T cell development, and it considers the opportunity to convert iPSC-derived T cells into off-the-shelf T cells for universal CAR-T cell treatment.


Author(s):  
Muhammad Sadeqi Nezhad

CAR-T cell therapy has been increasingly conducted for cancer patients in clinical settings. Progress in this therapeutic approach is hampered by the lack of a solid manufacturing process, T lymphocytes, and tumor-specific antigens. T-cell source used in CAR-T cell therapy is predominantly derived from the patient’s own T lymphocytes, which makes this approach impracticable to patients with progressive diseases and T leukemia. Autologous CAR-T cell generation is time-consuming due to lack of readily available T lymphocytes and is not applicable for third-party patients. Pluripotent stem cells, such as human induced pluripotent stem cells (hiPSCs), could provide an unlimited T-cell source for CAR-T cell development. iPSC-derived T cells would be a promising infinite T-cell source and are phenotypically defined, expandable and functional as physiological T cells. iPSC-derived T cells provide a feasible T-cell source for the development of off-the-shelf T cells and CAR-T cells. The combination of iPSC and CAR-Technologies provides an extraordinary opportunity to oncology and greatly facilitates cell-based therapy for cancer patients. T-iPSCs in combination with CAR is in early stage of development and the pre-clinical and clinical studies concerning the combination of these novel technologies are not sufficient. This article critically reviews the progress in iPSC-derived T cell development and provides a roadmap for development of CAR iPSC-derived T cells and off-the-shelf T-iPSCs. Keywords: CAR-T cell; iPSC; T cell; iPSC-derived T cell; tumor cell; therapeutic; off-the-shelf


Author(s):  
Muhammad Sadeqi Nezhad

CAR-T cell therapy has been increasingly conducted for cancer patients in clinical settings. Progress in this therapeutic approach is hampered by the lack of a solid manufacturing process, T lymphocytes, and tumor-specific antigens. T-cell source used in CAR-T cell therapy is predominantly derived from the patient’s own T lymphocytes, which makes this approach impracticable to patients with progressive diseases and T leukemia. Autologous CAR-T cell generation is time-consuming due to lack of readily available T lymphocytes and is not applicable for third-party patients. Pluripotent stem cells, such as human induced pluripotent stem cells (hiPSCs), could provide an unlimited T-cell source for CAR-T cell development. iPSC-derived T cells would be a promising infinite T-cell source and are phenotypically defined, expandable and functional as physiological T cells. iPSC-derived T cells provide a feasible T-cell source for the development of off-the-shelf T cells and CAR-T cells. The combination of iPSC and CAR-Technologies provides an extraordinary opportunity to oncology and greatly facilitates cell-based therapy for cancer patients. T-iPSCs in combination with CAR is in early stage of development and the pre-clinical and clinical studies concerning the combination of these novel technologies are not sufficient. This article critically reviews the progress in iPSC-derived T cell development and provides a roadmap for development of CAR iPSC-derived T cells and off-the-shelf T-iPSCs. Keywords: CAR-T cell; iPSC; T cell; iPSC-derived T cell; tumor cell; therapeutic; off-the-shelf


Sign in / Sign up

Export Citation Format

Share Document