Experimental and Analytical of Ultrasonic Elliptical Vibration Cutting of Micro-pyramid Reflective Mold Based on Guided Wave Transmission

Author(s):  
Tao Jiang ◽  
Jintao Yang ◽  
Jun Pi ◽  
Wenyu Luo ◽  
Jun Zhang

Abstract The ultrasonic elliptical vibration cutting (UEVC) technique has been found to be a promising technique for ultraprecision machining of microstructural functional surfaces. However, the current UEVC technique can’t achieve higher frequency ultrasonic cutting due to its rigid orthogonal vibration transmission. To further study the cutting mechanism and removal characteristics in high frequency UEVC of microstructural surface, the UEVC based on flexible guided wave transmission is proposed which can achieve 96.8 kHz. The influence of bending vibration of guided wave band on longitudinal vibration is elaborated with the model of the bending vibration dynamic model of the guided wave. The model of elliptical trajectory deflection of tool tip is established. Based on the theoretical modeling and finite element simulation, the residual height and material removal characteristics of elliptic trajectory with variable deflection angle are simulated and analyzed. The results show that when the deflection angle is between 10° and 70°, the tangential force is small and stable. Finally, the cutting experiments of micro-pyramid reflective mold in guided wave UEVC and conventional cutting (CC) are carried out. Compared with CC, high-frequency UEVC can obtain micro-pyramid elements with average roughness of 5.21 nm, that verifies the applicability of high-frequency UEVC in precision machining of microstructure.

2011 ◽  
Vol 467-469 ◽  
pp. 236-240 ◽  
Author(s):  
Wen Li ◽  
De Yuan Zhang

Based on analysis of the micro-surface and kinematical formulas of elliptical vibration cutting(EVC), the paper presents that frequency and amplitude of vibration parameter affect surface roughness, forming accuracy and machining efficiency of weak rigidity workpiece: increase vibration frequency are result in lower vibration cutting duty cycle , lower cutting force, advancer critical speed, so advance forming accuracy and machining efficiency; decrease amplitude are result in reduce the height of vibration ripples in cutting direction , so improve surface roughness. Experiences of cutting the weak rigidity workpiece by the designed double bending hybrid vibration high transducer, verified that the high frequency elliptical vibration cutting are proved more conducive to machining weak rigidity workpiece.


2014 ◽  
Vol 621 ◽  
pp. 153-157
Author(s):  
Lin Hua Hu ◽  
Ming Zhou ◽  
Yu Liang Zhang

Due to intermitted cut characteristics, ultrasonic elliptical vibration cutting offers many benefits e.g. reducing tool force, improving surface finish and extending tool life. This paper presents the model-based development of an ultrasonic elliptical vibration cutting device with 1st resonant mode of longitudinal vibration and 3 rd resonant mode of bending vibration. The development of the device was assisted with the finite element program ANSYS. Based on theoretical and experimental studies, the requirements of the device are estimated. The maximum displacement amplitude of the ultrasonic elliptical vibration cutting device is 13.1μm and 8.3μm for bending vibration and longitudinal vibration respectively at an exciting voltage of 400Vp-p.


2011 ◽  
Vol 189-193 ◽  
pp. 3-8
Author(s):  
Wen Li ◽  
Lin Song Yan ◽  
De Yuan Zhang

Based on ultrasonic elliptical vibration cutting (UEVC) model, kinematical formulas of elliptical vibration cutting(EVC) is established, the paper presented relationship of vibration parameters effecting on surface roughness, machining accuracy and machining efficiency, revealed UEVC characteristics of high frequency and small amplitude are more conducive to improve surface roughness, advance EVC machining efficiency. Experiences of cutting the weak rigidity workpiece by the designed adjusting frequency elliptical transducer is proved that compared conventional turning, increasing vibration frequency and decreasing amplitude are result in improve surface roughness, and compared low frequency EVC, decrease amplitude are result in reduce the height of vibration ripples in cutting direction, and advance machining efficiency. So high frequency and small amplitude EVC is more conducive to precision machining and ultra-precision machining.


Author(s):  
Sen Yin ◽  
Zhigang Dong ◽  
Yan Bao ◽  
Renke Kang ◽  
Wenhao Du ◽  
...  

Abstract Ultrasonic elliptical vibration cutting (UEVC) technique, as an advanced cutting method, has been successfully applied to machine difficult-to-cut materials for the last decade. In this study, the mechanism of the elliptical vibration locus caused by the “asymmetric structure” of the horn was analyzed theoretically firstly, and the corresponding relationship between the degree of asymmetry and the elliptical vibration locus was determined based on finite element method (FEM). Then an efficient single-excitation UEVC device with “asymmetric structure” was developed and optimized. The resonant frequency of the device was 40.8 kHz, and the amplitude reached 12.4 µm, which effectively broke the limitation of cutting speed in UEVC. Finally, the UEVC device's performance was tested, and the advantages in improving the tungsten alloy surface quality and reducing diamond cutting tool wear validated the technical capability and principle of the proposed device.


2018 ◽  
Vol 12 (4) ◽  
pp. 573-581 ◽  
Author(s):  
Hiroshi Saito ◽  
Hongjin Jung ◽  
Eiji Shamoto ◽  
Shinya Suganuma ◽  
Fumihiro Itoigawa ◽  
...  

Low-cost mirror surface machining of die steel is proposed in this research by applying elliptical vibration cutting with diamond-coated tools sharpened by pulse laser grinding (PLG). It is well known that conventional diamond cutting cannot be applied to die steel owing to rapid tool wear. Several attempts have been reported to prevent rapid tool wear, such as using ultrasonic elliptical vibration cutting. The ultrasonic elliptical vibration cutting developed by the authors to achieve mirror surface finish on die steel and prevent rapid wear is widely used in the industry. However, high-cost single-crystalline diamond tools that are finished using a time-consuming lapping process are required to obtain mirror surfaces. The authors, meanwhile, have recently developed the PLG process to efficiently sharpen the cutting edges of hard tool materials such as cubic boron nitride. Therefore, a practical mirror surface machining method for die steel is proposed in this research, namely elliptical vibration cutting with low-cost diamond-coated tools sharpened by the efficient PLG process. The results of the machining experiments confirmed that practical mirror surface machining of die steel can be achieved by the proposed method.


Sign in / Sign up

Export Citation Format

Share Document