scholarly journals Polarization Domain Dynamics of Barium Titanate Ultrathin Films Using Piezoresponse Force Microscopy.

Author(s):  
gregory salamo ◽  
Mohammad Zamani-Alavijeh ◽  
Timothy Morgan ◽  
Andrian Kuchuk

Abstract Piezoresponse force microscopy is used to study the velocity of the polarization domain wall in ultrathin ferroelectric barium titanate films grown on strontium titanate substrates by molecular beam epitaxy. The electric field due to the cone of the atomic force microscope tip is proposed as the dominant electric field of the tip in thin films for domain expansion at lateral distances greater than about one tip diameter away from the tip. The velocity of the domain wall under the applied electric field by the tip in barium titanate for thin films (less than 40 nm) followed an expanding process given by Merz’s law. The material constants in a fit of the data to Merz’s law for very thin films are reported as about 4.2 KV/cm for activation field, Ea, and 0.05 nm/s for limiting velocity, v∞. These material constants showed a dependence on the level of strain in the films but no fundamental dependence on thickness.

2021 ◽  
Author(s):  
Jing Wang ◽  
Jing Ma ◽  
Houbing Huang ◽  
Ji Ma ◽  
Hasnain Jafri ◽  
...  

Abstract The electronic conductivities of ferroelectric domain walls have been extensively explored over the past decade for potential nanoelectronic applications. However, the realization of logic devices based on ferroelectric domain walls requires reliable and flexible control of the domain-wall configuration and conduction path. Here, we demonstrate electric-field-controlled stable and repeatable on-and-off switching of conductive domain walls within topologically confined vertex domains naturally formed in self-assembled ferroelectric nano-islands. Using a combination of piezoresponse force microscopy, conductive atomic force microscopy, and phase-field simulations, we show that on-off switching is accomplished through reversible transformations between charged and neutral domain walls via electric-field-controlled domain-wall reconfiguration. By analogy to logic processing, we propose programmable logic gates (such as NOT, OR, AND and their derivatives) and logic circuits (such as fan-out) based on reconfigurable conductive domain walls. Our work provides a potentially viable platform for programmable all-electric logic based on a ferroelectric domain-wall network with low energy consumption.


1997 ◽  
Vol 14 (2) ◽  
pp. 134-137 ◽  
Author(s):  
Cui Da-fu ◽  
Lü Hui-bin ◽  
Wang Hui-sheng ◽  
Chen Zheng-hao ◽  
Zhou Yue-liang ◽  
...  

Materials ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 2418 ◽  
Author(s):  
Wanli Zhang ◽  
Yanhu Mao ◽  
Shaoan Yan ◽  
Yongguang Xiao ◽  
Minghua Tang ◽  
...  

Bi4Ti2.99Mn0.01O12 (BTM) thin films with different ratio of neodymium (Nd) doping were prepared on Pt(111)/Ti/SiO2/Si(100) substrates through a sol-gel method. The effects of Nd doping on domain dynamics and temperature-dependent fatigue behaviors of BTM thin films were systematically studied. The polarization fatigues of BTM (not doped) and Bi3.5Nd0.5Ti2.99Mn0.01O12 (BNTM05) thin films first get better with the increasing temperature (T) from 300 to 350 K and then become worse from 350 to 400 K, while Bi3.15Nd0.85Ti2.99Mn0.01O12 (BNTM85) thin films show enhanced fatigue endurance from 300 to 400 K. It can be shown that the long-range diffusion of oxygen vacancies in BTM thin film happens more easily through the impedance spectra analysis with T from 300 to 475 K, which can be verified by a lower activation energies (0.13–0.14 eV) compared to those of BNTM05 and BNTM85 (0.17–0.21 eV). Using a temperature-dependent piezoresponse force microscopy (PFM), we have found more responsive domain fragments in Nd-substituted films. The microscopic domain evolution from 298 to 448 K was done to further explain that the domain wall unpinning effect has been enhanced with increasing T. The correlation between microscopic domain dynamics and macroscopic electrical properties clearly demonstrates the effects of charged domain wall in Nd-doped BTM thin films during the fatigue tests.


2015 ◽  
Vol 21 (1) ◽  
pp. 154-163 ◽  
Author(s):  
Konstantin Romanyuk ◽  
Sergey Yu. Luchkin ◽  
Maxim Ivanov ◽  
Arseny Kalinin ◽  
Andrei L. Kholkin

AbstractPiezoresponse force microscopy (PFM) provides a novel opportunity to detect picometer-level displacements induced by an electric field applied through a conducting tip of an atomic force microscope (AFM). Recently, it was discovered that superb vertical sensitivity provided by PFM is high enough to monitor electric-field-induced ionic displacements in solids, the technique being referred to as electrochemical strain microscopy (ESM). ESM has been implemented only in multi-frequency detection modes such as dual AC resonance tracking (DART) and band excitation, where the response is recorded within a finite frequency range, typically around the first contact resonance. In this paper, we analyze and compare signal-to-noise ratios of the conventional single-frequency method with multi-frequency regimes of measuring surface displacements. Single-frequency detection ESM is demonstrated using a commercial AFM.


1999 ◽  
Vol 353 (1-2) ◽  
pp. 194-200 ◽  
Author(s):  
C. Coupeau ◽  
J.F. Naud ◽  
F. Cleymand ◽  
P. Goudeau ◽  
J. Grilhé

Sign in / Sign up

Export Citation Format

Share Document