scholarly journals Selection and validation of reference genes for measuring gene expression in Toona ciliata under different experimental conditions by quantitative real-time PCR analysis

2020 ◽  
Author(s):  
Huiyun Song ◽  
Wenmai Mao ◽  
Zhihao Duan ◽  
Qingmin Que ◽  
Wei Zhou ◽  
...  

Abstract Background:Before studying gene expression of different organisms, it is important to determine the best reference gene. At present, the most accurate method of detecting gene expression is quantitative real-time PCR (RT-qPCR). With this method, reference genes that are stable in different biological systems and under different conditions can be obtained. Toona ciliata Roem ( T. ciliata ). is a valuable and fast-growing timber specie. In this study, 20 reference genes were identified using RT-qPCR, as a primary prerequisite for future gene expression analysis. Four different methods, geNorm, NormFinder, BestKeeper, and RankAggreg were used to evaluate the expression stability of the 20 candidate reference genes in various tissues under different conditions.Results:The experimental results showed that TUB-α was the most stably expressed reference gene across all samples and UBC17 was the most stable in leaves and young stems under Hypsipyla robusta ( H. robusta ) and methyl jasmonate (MeJA) treatments. In addition, PP2C59 and UBC5B were the best-performing genes in leaves under H. robusta treatment, while HIS1 and ACT7 were the best reference genes in young stems. The two best reference genes were 60S-18 and TUB-α after treatment at 4 °C. The expression of HIS6 and MUB1 was the most stable under PEG6000 treatment. The accuracy of the selected reference genes was verified using the transcription factor MYB3 ( TcMYB3) gene.Conclusions:This is the first report to verify the best reference genes for normalizing gene expression in T. ciliata under different conditions, which will facilitate future elucidation of gene regulations in this species.

2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Huiyun Song ◽  
Wenmai Mao ◽  
Zhihao Duan ◽  
Qingmin Que ◽  
Wei Zhou ◽  
...  

Abstract Background Before studying gene expression of different organisms, it is important to determine the best reference gene. At present, the most accurate method of detecting gene expression is quantitative real-time PCR (RT-qPCR). With this method, reference genes that are stable in different biological systems and under different conditions can be obtained. Toona ciliata Roem (T. ciliata). is a valuable and fast-growing timber specie. In this study, 20 reference genes were identified using RT-qPCR, as a primary prerequisite for future gene expression analysis. Four different methods, geNorm, NormFinder, BestKeeper, and RankAggreg were used to evaluate the expression stability of the 20 candidate reference genes in various tissues under different conditions. Results The experimental results showed that TUB-α was the most stably expressed reference gene across all samples and UBC17 was the most stable in leaves and young stems under Hypsipyla robusta (H. robusta) and methyl jasmonate (MeJA) treatments. In addition, PP2C59 and UBC5B were the best-performing genes in leaves under H. robusta treatment, while HIS1 and ACT7 were the best reference genes in young stems. The two best reference genes were 60S-18 and TUB-α after treatment at 4 °C. The expression of HIS6 and MUB1 was the most stable under PEG6000 treatment. The accuracy of the selected reference genes was verified using the transcription factor MYB3 (TcMYB3) gene. Conclusions This is the first report to verify the best reference genes for normalizing gene expression in T. ciliata under different conditions, which will facilitate future elucidation of gene regulations in this species.


2020 ◽  
Author(s):  
Huiyun song ◽  
Wenmai Mao ◽  
Zhihao Duan ◽  
Qingmin Que ◽  
Wei Zhou ◽  
...  

Abstract Background: Before studying gene expression of different organisms, it is important to determine the best reference gene. At present, the most accurate method of detecting gene expression is quantitative real-time PCR (RT-qPCR). With this method, reference genes that are stable in different biological systems and under different conditions can be obtained. Toona ciliata Roem (T. ciliata). is a valuable and fast-growing timber specie. In this study, 20 reference genes were identified using RT-qPCR, as a primary prerequisite for future gene expression analysis. Four different methods, geNorm, NormFinder, BestKeeper, and RankAggreg were used to evaluate the expression stability of the 20 candidate reference genes in various tissues under different conditions. Results: The experimental results showed that TUB-α was the most stably expressed reference gene across all samples and UBC17 was the most stable in leaves and young stems under Hypsipyla robusta (H. robusta) and methyl jasmonate (MeJA) treatments. In addition, PP2C59 and UBC5B were the best-performing genes in leaves under H. robusta treatment, while HIS1 and ACT7 were the best reference genes in young stems. The two best reference genes were 60S-18 and TUB-α after treatment at 4 °C. The expression of HIS6 and MUB1 was the most stable under PEG6000 treatment. The accuracy of the selected reference genes was verified using the transcription factor MYB3 (TcMYB3) gene. Conclusions: This is the first report to verify the best reference genes for normalizing gene expression in T. ciliata under different conditions, which will facilitate future elucidation of gene regulations in this species.


2020 ◽  
Author(s):  
Huiyun song ◽  
Wenmai Mao ◽  
Zhihao Duan ◽  
Qingmin Que ◽  
Wei Zhou ◽  
...  

Abstract Background: Before studying gene expression of different organisms, it is important to determine the best reference gene. At present, the most accurate method of detecting gene expression is quantitative real-time PCR (RT-qPCR). With this method, reference genes that are stable in different biological systems and under different conditions can be obtained. Toona ciliata Roem (T. ciliata). is a valuable and fast-growing timber specie. In this study, 20 reference genes were identified using RT-qPCR, as a primary prerequisite for future gene expression analysis. Four different methods, geNorm, NormFinder, BestKeeper, and RankAggreg were used to evaluate the expression stability of the 20 candidate reference genes in various tissues under different conditions. Results: The experimental results showed that TUB-α was the most stably expressed reference gene across all samples and UBC17 was the most stable in leaves and young stems under Hypsipyla robusta (H. robusta) and methyl jasmonate (MeJA) treatments. In addition, PP2C59 and UBC5B were the best-performing genes in leaves under H. robusta treatment, while HIS1 and ACT7 were the best reference genes in young stems. The two best reference genes were 60S-18 and TUB-α after treatment at 4 °C. The expression of HIS6 and MUB1 was the most stable under PEG6000 treatment. The accuracy of the selected reference genes was verified using the transcription factor MYB3 (TcMYB3) gene. Conclusions: This is the first report to verify the best reference genes for normalizing gene expression in T. ciliata under different conditions, which will facilitate future elucidation of gene regulations in this species.


2020 ◽  
Author(s):  
Huiyun song ◽  
Wenmai Mao ◽  
Zhihao Duan ◽  
Qingmin Que ◽  
Wei Zhou ◽  
...  

Abstract Background: Before studying the gene expression of different organisms, it is important to determine the best reference gene. At present, the most accurate method for detecting gene expression is quantitative real-time PCR(RT-qPCR). By using this method, reference genes that are stable in different biological systems and under different conditions can be obtained. Toona ciliata Roem (T. ciliata). is a valuable and fast-growing timber species. In this study, 20 reference genes were identified through RT-qPCR, as a primary prerequisite for future gene expression analysis. Four different methods, geNorm, NormFinder, BestKeeper, and RankAggreg were used to evaluate the stability of expression of 20 candidate reference genes in various tissues under different conditions. Results: The experimental results showed that TUB-α was the most stably expressed reference gene across all samples; UBC17 was found to be the most stable in leaves & young stems under Hypsipyla robusta (H. robusta) and methyl jasmonate (MeJA) treatment. In addition, under H. robusta treatment, PP2C59 and UBC5B were the best-performing genes in leaves, while HIS1 and ACT7 were the best reference genes in young stems. Under low temperature (4℃) treatment, the two best reference genes were 60S-18 and TUB-α. The expression of HIS6 and MUB1 was the most stable under PEG6000 treatment. The accuracy of the selected reference genes was verified using transcription factor MYB3(TcMYB3) genes. Conclusions: This is the first report to verify the best reference genes for normalizing gene expression in T. ciliata under different conditions, which will facilitate the future elucidation of gene regulations in this species.


Genome ◽  
2018 ◽  
Vol 61 (5) ◽  
pp. 349-358 ◽  
Author(s):  
Yanchun You ◽  
Miao Xie ◽  
Liette Vasseur ◽  
Minsheng You

Gene expression analysis provides important clues regarding gene functions, and quantitative real-time PCR (qRT-PCR) is a widely used method in gene expression studies. Reference genes are essential for normalizing and accurately assessing gene expression. In the present study, 16 candidate reference genes (ACTB, CyPA, EF1-α, GAPDH, HSP90, NDPk, RPL13a, RPL18, RPL19, RPL32, RPL4, RPL8, RPS13, RPS4, α-TUB, and β-TUB) from Plutella xylostella were selected to evaluate gene expression stability across different experimental conditions using five statistical algorithms (geNorm, NormFinder, Delta Ct, BestKeeper, and RefFinder). The results suggest that different reference genes or combinations of reference genes are suitable for normalization in gene expression studies of P. xylostella according to the different developmental stages, strains, tissues, and insecticide treatments. Based on the given experimental sets, the most stable reference genes were RPS4 across different developmental stages, RPL8 across different strains and tissues, and EF1-α across different insecticide treatments. A comprehensive and systematic assessment of potential reference genes for gene expression normalization is essential for post-genomic functional research in P. xylostella, a notorious pest with worldwide distribution and a high capacity to adapt and develop resistance to insecticides.


Gene Reports ◽  
2019 ◽  
Vol 14 ◽  
pp. 94-99 ◽  
Author(s):  
Zhongdian Dong ◽  
Pushun Chen ◽  
Ning Zhang ◽  
Shunkai Huang ◽  
Hairui Zhang ◽  
...  

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Bo Wang ◽  
Huirong Duan ◽  
Peifang Chong ◽  
Shiping Su ◽  
Lishan Shan ◽  
...  

Abstract Suitable reference genes can be used to calibrate the error in quantitative real-time PCR (qPCR) experiments, making the results more credible. However, there are no reference genes suitable for multiple species and under different experimental conditions. Nitraria tangutorum Bobr. is a typical plant native to desert areas. It is drought-resistant, saline-alkali resistant, extreme temperatures-resistant, and has strong adaptability. To date, the importance of this germplasm has not been sufficiently understood; therefore, it is still unclear which genes can be used as reference genes to calibrate qPCR data of N. tangutorum. In this study we analyzed the expression levels of 10 candidate reference genes (ACT, GAPDH, TUA, TUB, CYP, UBC, His, PP2A, HSP, and EF1-α) in N. tangutorum seedlings under a series of experimental conditions, including in different organs (root, stem, and leaf) and under abiotic stresses (salt, drought, heat, and cold) and hormone stimuli (abscisic acid) by qPCR. Three software programs (geNorm, NormFinder, and BestKeeper) were used to evaluate the expression stability of the ten genes. Comprehensive analysis showed that EF1-α and His had the best expression stability, whereas HSP was the least suitable as a reference gene. The expression profile of NtCER7, a gene related to the regulation of cuticular wax biosynthesis in N. tangutorum, verified the accuracy of the experimental results. Based on this study, we recommend EF1-α and His as suitable reference genes for N. tangutorum. This paper provides the first data on stable reference genes in N. tangutorum, which will be beneficial to studying the gene expression of N. tangutorum and other Nitraria species in the future.


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e6536 ◽  
Author(s):  
Li Miao ◽  
Xing Qin ◽  
Lihong Gao ◽  
Qing Li ◽  
Shuzhen Li ◽  
...  

Background Quantitative real-time PCR (qRT-PCR) is a commonly used high-throughput technique to measure mRNA transcript levels. The accuracy of this evaluation of gene expression depends on the use of optimal reference genes. Cucumber–pumpkin grafted plants, made by grafting a cucumber scion onto pumpkin rootstock, are superior to either parent plant, as grafting conveys many advantages. However, although many reliable reference genes have been identified in both cucumber and pumpkin, none have been obtained for cucumber–pumpkin grafted plants. Methods In this work, 12 candidate reference genes, including eight traditional genes and four novel genes identified from our transcriptome data, were selected to assess their expression stability. Their expression levels in 25 samples, including three cucumber and three pumpkin samples from different organs, and 19 cucumber–pumpkin grafted samples from different organs, conditions, and varieties, were analyzed by qRT-PCR, and the stability of their expression was assessed by the comparative ΔCt method, geNorm, NormFinder, BestKeeper, and RefFinder. Results The results showed that the most suitable reference gene varied dependent on the organs, conditions, and varieties. CACS and 40SRPS8 were the most stable reference genes for all samples in our research. TIP41 and CACS showed the most stable expression in different cucumber organs, TIP41 and PP2A were the optimal reference genes in pumpkin organs, and CACS and 40SRPS8 were the most stable genes in all grafted cucumber samples. However, the optimal reference gene varied under different conditions. CACS and 40SRPS8 were the best combination of genes in different organs of cucumber–pumpkin grafted plants, TUA and RPL36Aa were the most stable in the graft union under cold stress, LEA26 and ARF showed the most stable expression in the graft union during the healing process, and TIP41 and PP2A were the most stable across different varieties of cucumber–pumpkin grafted plants. The use of LEA26, ARF and LEA26+ARF as reference genes were further verified by analyzing the expression levels of csaCYCD3;1, csaRUL, cmoRUL, and cmoPIN in the graft union at different time points after grafting. Discussion This work is the first report of appropriate reference genes in grafted cucumber plants and provides useful information for the study of gene expression and molecular mechanisms in cucumber–pumpkin grafted plants.


Sign in / Sign up

Export Citation Format

Share Document