scholarly journals Interfacial Engineering of Smart Polymer Self-Assembly Using Doped-Nanostructures for Constructing Stable Nano-Carriers

Author(s):  
Arash Arabmarkadeh ◽  
Nasser Mortezaei ◽  
Mojtaba Mirzaasadi ◽  
Amin Hejazi ◽  
Amir Sepehri

Abstract Nowadays, nanotechnology has been developed in various fields of treatment, including cancer treatment. Since the prevalence of different types of cancer has risen, and currently available cancer treatments such as chemotherapy and radiotherapy may cause serious side effects. In this regard, researchers have made considerable efforts to encourage the creation and make strides in treating this deadly disease. Meanwhile, nanotechnology has become widespread, and various nanomaterials, including nanoparticles, have been extensively used to transfer the drug to the targeted sites. Recently, many drug delivery systems have been developed based on nanoparticles, and various substances have been employed as drug stimulants or enhancers to improve the treatment effectiveness, stability, and safety of anticancer drugs. In this paper, the drug delivery capability of three new categories of carbon nanoparticles (i.e., Fullerenes, nanosheets, and Carbon Nano Tubes (CNTs)) was investigated by Molecular Dynamics (MD) simulation. Energy, Gyration Radius (Rg), Hydrogen bond (H-Bond), Radial Distribution Function (RDF), and Solvent Accessible Surface Area (SASA) analyses have been used to compare the studied nanoparticles. The Boron Carbon Nitride (BCN) nanosheet simulation exhibited the lowest drug particle Contact Area, the highest RDF, the most inferior reduction in the Rg, the highest number of H-Bonds, and the highest drug adsorption energy. Thus, BCN nanosheet was introduced as the best nanoparticle for drug delivery purposes.

2019 ◽  
Author(s):  
David Wright ◽  
Fouad Husseini ◽  
Shunzhou Wan ◽  
Christophe Meyer ◽  
Herman Van Vlijmen ◽  
...  

<div>Here, we evaluate the performance of our range of ensemble simulation based binding free energy calculation protocols, called ESMACS (enhanced sampling of molecular dynamics with approximation of continuum solvent) for use in fragment based drug design scenarios. ESMACS is designed to generate reproducible binding affinity predictions from the widely used molecular mechanics Poisson-Boltzmann surface area (MMPBSA) approach. We study ligands designed to target two binding pockets in the lactate dehydogenase A target protein, which vary in size, charge and binding mode. When comparing to experimental results, we obtain excellent statistical rankings across this highly diverse set of ligands. In addition, we investigate three approaches to account for entropic contributions not captured by standard MMPBSA calculations: (1) normal mode analysis, (2) weighted solvent accessible surface area (WSAS) and (3) variational entropy. </div>


2017 ◽  
Vol 95 (9) ◽  
pp. 991-998 ◽  
Author(s):  
Prabal K. Maiti

Using fully atomistic molecular dynamics simulation that are several hundred nanoseconds long, we demonstrate the pH-controlled sponge action of PAMAM dendrimer. We show how at varying pH levels, the PAMAM dendrimer acts as a wet sponge; at neutral or low pH levels, the dendrimer expands noticeably and the interior of the dendrimer opens up to host several hundreds to thousands of water molecules depending on the generation number. Increasing the pH (i.e., going from low pH to high pH) leads to the collapse of the dendrimer size, thereby expelling the inner water, which mimics the ‘sponge’ action. As the dendrimer size swells up at a neutral pH or low pH due to the electrostatic repulsion between the primary and tertiary amines that are protonated at this pH, there is dramatic increase in the available solvent accessible surface area (SASA), as well as solvent accessible volume (SAV).


2021 ◽  
Author(s):  
Cecylia Severin Lupala ◽  
Yongjin Ye ◽  
Hong Chen ◽  
Xiaodong Su ◽  
Haiguang Liu

The spreading of SARS-CoV-2 virus resulted the COVID-19 pandemic, which has caused more than 5 millions of death globally. Several major variants of SARS-CoV-2 have emerged and placed challenges in controlling the infections. The recently emerged Omicron variant raised serious concerns about reducing efficacy of antibodies or vaccines, due to its vast mutations. We modelled the complex structure of human ACE2 protein and the receptor binding domain of Omicron variant, then conducted atomistic molecular dynamics simulations to study the binding interactions. The analysis shows that the Omicron variant RBD binds more strongly to the human ACE2 protein than the original strain. The mutation at the ACE2-RBD interface enhanced the tight binding by increasing hydrogen bonding interaction and enlarging buried solvent accessible surface area.


2016 ◽  
Author(s):  
Robert S Sade

A model which treats the denatured and native conformers of spontaneously-folding fixed two-state systems as being confined to harmonic Gibbs energy-wells has been developed. Within the assumptions of this model the Gibbs energy functions of the denatured (DSE) and the native state (NSE) ensembles are described by parabolas, with the mean length of the reaction coordinate (RC) being given by the temperature-invariant denaturant m value. Consequently, the ensemble-averaged position of the transition state ensemble (TSE) along the RC, and the ensemble-averaged Gibbs energy of the TSE are determined by the intersection of the DSE and the NSE-parabolas. The equations derived enable equilibrium stability and the rate constants to be rationalized in terms of the mean and the variance of the Gaussian distribution of the solvent accessible surface area of the conformers in the DSE and the NSE. The implications of this model for protein folding are discussed.


2019 ◽  
Vol 48 (8) ◽  
pp. 773-779 ◽  
Author(s):  
Anatoliy Dragan ◽  
Peter Privalov ◽  
Colyn Crane-Robinson

Abstract The heat capacity change, ΔCp, accompanying the folding/unfolding of macromolecules reflects their changing state of hydration. Thermal denaturation of the DNA duplex is characterized by an increase in ΔCp but of much lower magnitude than observed for proteins. To understand this difference, the changes in solvent accessible surface area (ΔASA) have been determined for unfolding the B-form DNA duplex into disordered single strands. These showed that the polar component represents ~ 55% of the total increase in ASA, in contrast to globular proteins of similar molecular weight for which the polar component is only about 1/3rd of the total. As the exposure of polar surface results in a decrease of ΔCp, this explains the much reduced heat capacity increase observed for DNA and emphasizes the enhanced role of polar interactions in maintaining duplex structure. Appreciation of a non-zero ΔCp for DNA has important consequences for the calculation of duplex melting temperatures (Tm). A modified approach to Tm prediction is required and comparison is made of current methods with an alternative protocol.


Sign in / Sign up

Export Citation Format

Share Document